Search found 91 matches

by salazar
Sun May 23, 2010 6:04 pm
Forum: Combinatorica
Topic: JBTST V 2010, Problema 4
Replies: 1
Views: 158

Se obtine relativ usor o configuratie cu 36 de diagonale. Pt. a dem. ca e nr. maxim, sectionam un dreptunghi 2x8 si dem. ca putem pune maxim 9 diagonale in el. Pp. ca nr. diagonalelor este \ge 10 de unde rezulta ca minim 2 dreptunghiuri 2x1(model care sa contina ambele liniil) au in ele cate 2 diago...
by salazar
Mon Apr 19, 2010 7:56 pm
Forum: Baraje juniori
Topic: Baraje JBMO 2010
Replies: 3
Views: 1046

New. IMPORTANT! Loturile lărgite de juniori şi seniori sunt convocate la Bucureşti pentru pregătire şi pentru susţinerea unor baraje sâmbătă, 24 aprilie 2010 şi duminică, 25 aprilie 2010, ambele baraje încep la ora 09:00. Elevii vor fi cazaţi la Liceul „Nichita Stănescu” (staţia de metrou Georgian)...
by salazar
Wed Apr 14, 2010 2:45 pm
Forum: Clasa a VIII-a
Topic: ONM 2010 Iasi Problema 3
Replies: 1
Views: 180

Fie P mijlocul laturii VB . \triangle{VMB} isoscel \Longrightarrow MP\perp VB . (VMB)\perp(VAB); (VMB)\cap (VAB)=VB; MP\perp VB \Longrightarrow MP\perp (VAB)\Longrightarrow MP\perp AP . Acum folosind teorema medianei in \triangle VAB , teorema lui Pitagora in \triangle MBP si \triangle APM si teorem...
by salazar
Mon Apr 12, 2010 10:07 pm
Forum: Etapa nationala
Topic: ONM 2010 Clasele VII-XII
Replies: 4
Views: 1282

Felicitari tuturor participantilor!
by salazar
Mon Apr 12, 2010 5:28 pm
Forum: Baraje juniori
Topic: Baraje JBMO 2010
Replies: 3
Views: 1046

Baraje JBMO 2010

Rog pe cine cunoaste(sau cand se va cunoaste) programul barajelor pentru juniori sa posteze aici.
Multumesc!
by salazar
Tue Mar 30, 2010 9:45 pm
Forum: Clasa a IX-a
Topic: Shortlist ONM 2003
Replies: 3
Views: 880

O alta abordare: \sum \frac{(a+b)^3}{c}=\sum \frac{(a+b)^4}{ac+bc}\ge(C.B.S)\frac{[(a+b)^2+(b+c)^2+(c+a)^2]^2}{2(ab+bc+ca)}\ge 8(a^2+b^2+c^2)\Longleftrightarrow (\sum a^2+\sum ab)^2\ge 4(\sum a^2)(\sum ab) Notand \sum a^2=x si \sum ab=y ramane de demonstrat ca (x+y)^2\ge 4xy\Longleftrightarrow (x-y)...
by salazar
Mon Mar 29, 2010 1:25 pm
Forum: Clasa a VIII-a
Topic: Tetraedru-SHL 2002
Replies: 1
Views: 167

Tetraedru-SHL 2002

In tetraedrul \( ABCD \) punctele \( E \) si \( F \) sunt mijloacele medianelor \( AM \) si \( AN \) ale triunghiurilor \( ABC \) respectiv \( ACD \). Daca \( CE\cap AB={P} \),\( CF\cap AD={Q} \), \( DF\cap AC={R} \), demonstrati ca:
a)\( 9 \)Aria\( (PQR) \)=Aria\( (BDC) \);
b)\( 12(PQ+EF+MN)=13BD \).

Virginia si Vasile Tica, Campulung
by salazar
Sun Mar 28, 2010 9:32 pm
Forum: Chat de voie
Topic: SHL
Replies: 0
Views: 142

SHL

Ma poate ajuta cineva si pe mine cu SHl-uri din anii trecuti pentru ONM?
Multumesc anticipat!
by salazar
Mon Mar 22, 2010 1:48 pm
Forum: Teoria Numerelor
Topic: The Clock-Tower School Juniors Competion 2nd problem
Replies: 2
Views: 203

Marius Mainea wrote:\( 2\cdot 6\cdot 9 \)
de exemplu, pentru x=y=1 si x=1.y=2 c.m.m.d.c este 42
by salazar
Mon Mar 22, 2010 10:47 am
Forum: Alte concursuri
Topic: The Clock-Tower School Juniors Competiton
Replies: 0
Views: 157

The Clock-Tower School Juniors Competiton

Concursul s-a desfasurat in data de 20.03.2010, la Scoala "Take Ionescu" din Rm.Valcea. Timpul de rezolvare a problemelor a fost 4 ore si jumatate.
Problema 1
Problema 2
Problema 3
Problema 4
by salazar
Mon Mar 22, 2010 10:37 am
Forum: Combinatorica
Topic: The Clock-Tower School-Juniors Competition 4th problem
Replies: 1
Views: 303

The Clock-Tower School-Juniors Competition 4th problem

Fie o foaie infinita partitionata in patratele de latura 1. Se coloreaza interiorul fiecarui patratel cu una din culorile rosu sau negru (laturile patratelelor nu sunt considerate a fi colorate). Aratati ca pentru orice numar intreg pozitiv \alpha exista un triunghi echilateral de arie numar intreg ...
by salazar
Mon Mar 22, 2010 10:34 am
Forum: Inegalitati
Topic: The Clock-Tower School Juniors Competition 3rd problem
Replies: 2
Views: 327

The Clock-Tower School Juniors Competition 3rd problem

Determinati toate perechile de numere naturale nenule \( a \) si \( b \) pentru care \( a^6\geq 5^{b+1} \) si \( b^6\geq 5^{a+1} \).
by salazar
Mon Mar 22, 2010 10:31 am
Forum: Teoria Numerelor
Topic: The Clock-Tower School Juniors Competion 2nd problem
Replies: 2
Views: 203

The Clock-Tower School Juniors Competion 2nd problem

Fie multimea \( S=\lbrace(x+y)^7-x^7-y^7|x,y\in Z\} \). Determinati cel mai mare divizor comun al numerelor din \( S \)
by salazar
Mon Mar 22, 2010 10:26 am
Forum: Geometrie
Topic: The Clock-Tower School-Juniors Competion 1st problem
Replies: 1
Views: 191

The Clock-Tower School-Juniors Competion 1st problem

Fie un poligon regulat A_1A_2...A_{2010} avand centrul in punctul O . Pe fiecare dintre segmentele OA_k , cu k=1,2,...,2010 , se considera punctul B_k astfel incat: \frac{OB_k}{OA_k}=\frac{1}{k}. Determinati raportul dintre aria poligonului B_1B_2...B_{2010} si cea a poligonului A_1A_2...A_{2010} .
by salazar
Mon Mar 15, 2010 9:46 pm
Forum: Etapa nationala
Topic: ONM 2010 Clasele VII-XII
Replies: 4
Views: 1282

ONM 2010 Clasele VII-XII

Daca cineva stie, rog sa posteze aici programul, poate un site oficial etc.
Multumesc anticipat!
by salazar
Fri Mar 12, 2010 1:08 pm
Forum: Chat de voie
Topic: OJM 2010
Replies: 10
Views: 999

Bafta tuturor!
by salazar
Tue Mar 09, 2010 9:08 pm
Forum: Clasa a VIII-a
Topic: Cub
Replies: 0
Views: 121

Cub

Fie ABCDA'B'C'D' un cub cu latura de lungime a si punctele \( M\in (A^{\prime}D^{\prime} \), \( N\in (AB \), \( P\in (CC^{\prime} \) astfel incat D'M=AN=CP=x, \( x\in (0;2a) \). Aratati ca:
a) \( (MNP)\parallel (AD^{\prime}C) \)
b) \( V_{B^{\prime}MNP}<V_{B^{\prime}A^{\prime}C^{\prime}D. \)


G.M 12/2009

Go to advanced search