Search found 14 matches
- Sun Apr 19, 2009 10:56 am
- Forum: Clasa a IX-a
- Topic: Proprietate a partii intregi
- Replies: 1
- Views: 237
Punand x:=f(x) obtinem f(f(f(x)))=[f(x)] Aplicand f obtinem f(f(f(x)))=f([x]) De aici rezulta ca f(n) este intreg pentru orice intreg n . Daca pentru orice a,b reale am avea |f(a)-f(b)|<|sin{a}-sin{b}| , cum |sin{a}-sin{b}|=2|sin{\frac{a-b}{2}}cos{\frac{a+b}{2}}|<|a-b|[\tex], deoarece sin{x}<x,\ x\i...
- Sat Apr 04, 2009 10:14 am
- Forum: Clasa a X-a
- Topic: Progresie
- Replies: 0
- Views: 215
Progresie
Aratati ca nu exista o progresie aritmetica neconstanta de numere naturale avand toti termenii puteri netriviale de numere naturale.
- Sat Apr 04, 2009 10:13 am
- Forum: Clasa a X-a
- Topic: GM 2/2009
- Replies: 1
- Views: 317
GM 2/2009
Fie un triunghi ABC, D este punctul de tangenta al cercului inscris cu latura (BC) si \( R_1,R_2 \) razele cercurilor inscrise in triunghiurile ABD, respectiv ACD. Aratati ca \( sqrt{\frac{R_1}{R_2}}+sqrt{\frac{R_2}{R_1}}=\frac{2}{\sin ADB} \).
- Sat Apr 04, 2009 10:10 am
- Forum: Clasa a X-a
- Topic: GM 1/2009
- Replies: 0
- Views: 284
GM 1/2009
Cate numere din multimea {1,2,...,n}, \( n\ge 2 \), divid pe \( 5^{n!}-3^{n!} \)?
- Sun Mar 15, 2009 9:32 pm
- Forum: Clasa a X-a
- Topic: Inegalitate in 3 variabile conditionata
- Replies: 3
- Views: 490
- Fri Mar 13, 2009 5:43 pm
- Forum: Clasa a IX-a
- Topic: Inegalitate ,,draguta''
- Replies: 4
- Views: 454
- Fri Mar 13, 2009 5:42 pm
- Forum: Clasa a IX-a
- Topic: Inegalitate ,,draguta''
- Replies: 4
- Views: 454
- Fri Mar 13, 2009 5:09 pm
- Forum: Clasa a X-a
- Topic: Inegalitate in 3 variabile conditionata
- Replies: 3
- Views: 490
- Fri Mar 13, 2009 5:01 pm
- Forum: Clasa a IX-a
- Topic: Inegalitate conditionata cu interpretare trigonometrica
- Replies: 2
- Views: 311
Avem \frac{a^2}{tgA}+\frac{b^2}{tgB}+\frac{c^2}{tgC}=4S\geq\frac{4p^2}{tgAtgBtgC}. Dar S=p^2tg\frac{A}{2}tg\frac{B}{2}tg\frac{C}{2} si atunci tinand cont ca tgA=\frac{2tg\frac{A}{2}}{1-tg^2{\frac{A}{2}} si ca \sum{tg\frac{A}{2}tg\frac{B}{2}}=1 , notand x=tg^2{\frac{A}{2}} si analoagele, obtinem ineg...
- Fri Mar 13, 2009 11:03 am
- Forum: Clasa a X-a
- Topic: Poligon convex, punct de minim
- Replies: 2
- Views: 569
Poligon convex, punct de minim
Fie un poligon convex \( A_1A_2..A_n \) si ptr fiecare punct \( M \) din planul sau notam \( S(M)=MA_1+MA_2+..+MA_n. \) Aratati ca suma e minima ptr un punct \( T \) din interiorul poligonului, ai \( \angle A_1TA_2=..=\angle A_nTA_1=\frac{2\pi}{n} \).
- Fri Mar 13, 2009 10:58 am
- Forum: Clasa a IX-a
- Topic: Functie
- Replies: 0
- Views: 199
Functie
Fie o functie \( f:A\rightarrow A \) astfel incat \( f(x^2-y^2)+f(2xy)=f(x^2+y^2),\ x,\ y\in A \). Aflati functia in fiecare din cazurile \( A=\mathbb{N,Z,Q,R}. \)
- Fri Mar 13, 2009 9:39 am
- Forum: Clasa a X-a
- Topic: Inegalitate in 3 variabile conditionata
- Replies: 3
- Views: 490
Inegalitate in 3 variabile conditionata
Fie \( a,b,c>0 \) ai \( a+b+c=3. \) Atunci \( \frac{a}{2+b^3}+\frac{b}{2+c^3}+\frac{c}{2+b^3}\geq\frac{1}{6}(5+abc) \).
- Fri Mar 13, 2009 9:33 am
- Forum: Clasa a IX-a
- Topic: Subiectul 3 OJM IX 2009
- Replies: 9
- Views: 917
- Fri Mar 13, 2009 9:22 am
- Forum: Clasa a IX-a
- Topic: Inegalitate conditionata cu interpretare trigonometrica
- Replies: 2
- Views: 311
Inegalitate conditionata cu interpretare trigonometrica
Fie \( x,y,z\in (0,1) \) astfel incat \( \sqrt{xy}+\sqrt{yz}+\sqrt{zx}=1 \). Aratati ca avem \( 8xyz\geq (1-x)(1-y)(1-z) \).
Observatie: incercati o abordare trigonometrica.
Observatie: incercati o abordare trigonometrica.