Inegalitate in 3 variabile conditionata

Moderators: Filip Chindea, Andrei Velicu, Radu Titiu

Post Reply
zeta
Euclid
Posts: 14
Joined: Thu Mar 12, 2009 1:00 pm
Location: Slatina

Inegalitate in 3 variabile conditionata

Post by zeta »

Fie \( a,b,c>0 \) ai \( a+b+c=3. \) Atunci \( \frac{a}{2+b^3}+\frac{b}{2+c^3}+\frac{c}{2+b^3}\geq\frac{1}{6}(5+abc) \).
zeta
Euclid
Posts: 14
Joined: Thu Mar 12, 2009 1:00 pm
Location: Slatina

Post by zeta »

Observatie: daca nu ma insel, inegalitatea este adevarata ptr orice \( a,b,c>0,\ a+b+c\in (k,3] \), unde \( k \)este aprox \( 2,1742... \).
S.S.
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

Vezi aici.
zeta
Euclid
Posts: 14
Joined: Thu Mar 12, 2009 1:00 pm
Location: Slatina

Post by zeta »

Daca notam \( S=a+b+c \), atunci tinand cont ca \( ab^2+bc^2+ca^2\leq\frac{4S^3}{27}-abc \) (din solutia de pe mathlinks) rezulta ca membrul stang al inegalitatii este \( \geq\frac{1}{6}(\frac{81S-4S^3}{27}+abc) \).
S.S.
Post Reply

Return to “Clasa a X-a”