Search found 35 matches
- Sat Feb 20, 2010 5:52 pm
- Forum: Clasa a X-a
- Topic: Inegalitate Logaritmica
- Replies: 2
- Views: 327
Metoda II a>1\ \Longleftrightarrow functia logaritmica de baza a este strict crescatoare. Aplicand Bernoulli de 2 ori \Longleftrightarrow \Longleftrightarrow\ log_{a}^n(1+a)\ =\ log_{a}^n\[a\(1+\frac{1}{a}\)\]\ =\ \(1 + log_{a}\(1+\frac{1}{a}\)\)^n\ \ge\ 1+nlog_{a}\(1 + \frac{1}{a}\)\ =\ 1+log_{a}\...
- Sat Feb 20, 2010 3:34 pm
- Forum: LaTeX
- Topic: test,scuze
- Replies: 12
- Views: 1680
test
\( \varodot\ 1\ +\ 3\ =\ 7 \)
- Sat Feb 20, 2010 3:30 pm
- Forum: Clasa a IX-a
- Topic: Ecuatie
- Replies: 1
- Views: 172
Ecuatie
Rezolvati in \( R \) ecuatia :
\( |1-x|\ +\ x|x|\ +\ |1+x|\ =\ 3. \)
\( |1-x|\ +\ x|x|\ +\ |1+x|\ =\ 3. \)
- Sat Feb 20, 2010 3:24 pm
- Forum: Clasa a X-a
- Topic: Inegalitate Logaritmica
- Replies: 2
- Views: 327
Inegalitate Logaritmica
Daca \( a>1 \) , atunci aratati ca :
\( log_{a}(a+n) \le log_{a}^n(1+a)\ ,\ (\forall) x \in N \).
prof. Mihai Dicu (generalizarea unei probleme din G.M.1/2007)
\( log_{a}(a+n) \le log_{a}^n(1+a)\ ,\ (\forall) x \in N \).
prof. Mihai Dicu (generalizarea unei probleme din G.M.1/2007)
- Thu Feb 18, 2010 5:04 pm
- Forum: Clasa a 10-a
- Topic: Ecuatie trigonometrica
- Replies: 1
- Views: 154
Ecuatie trigonometrica
Sa se determine \( x,y \in R \) stiind ca:
\( tg^4x + tg^4y +2ctg^2x ctg^2y = 3+sin^2(x+y) \)
\( tg^4x + tg^4y +2ctg^2x ctg^2y = 3+sin^2(x+y) \)
- Tue Feb 16, 2010 9:41 pm
- Forum: Clasa a 10-a
- Topic: patrulater convex => paralelogram
- Replies: 4
- Views: 578
Am gasit
Se arata pe rand ca \( MN || AC \) , \( QP || AC \) respectiv \( NP || BD \) si \( QM || BD \)
\( Z_{M}=\frac{Z_{A}+Z_{B}}{2} \)
\( Z_{N}=\frac{Z_{B}+Z_{C}}{2} \)
Arat ca \( MN||AC \) \( \Longleftrightarrow \) \( \frac{Z_{C}-Z_{A}}{\frac{Z_{B}+Z_{C}}{2}-\frac{Z_{A}+Z_{B}}{2}} = 2 \in R \) . Analog celelalte
\( Z_{M}=\frac{Z_{A}+Z_{B}}{2} \)
\( Z_{N}=\frac{Z_{B}+Z_{C}}{2} \)
Arat ca \( MN||AC \) \( \Longleftrightarrow \) \( \frac{Z_{C}-Z_{A}}{\frac{Z_{B}+Z_{C}}{2}-\frac{Z_{A}+Z_{B}}{2}} = 2 \in R \) . Analog celelalte
- Tue Feb 16, 2010 9:00 pm
- Forum: Clasa a 10-a
- Topic: patrulater convex => paralelogram
- Replies: 4
- Views: 578
patrulater convex => paralelogram
Fie \( ABCD \) un patrulater convex , iar \( M \),\( N \),\( P \),\( Q \) mijloacele laturilor.Sa se arate ca \( MNPQ \) este paralelogram.
Caut o rezolvare cu numere complexe (Aplicarea Nr. Complexe in trigonometrie) dar inca nu am reusit..
Caut o rezolvare cu numere complexe (Aplicarea Nr. Complexe in trigonometrie) dar inca nu am reusit..
- Thu Sep 24, 2009 4:24 pm
- Forum: Clasa a X-a
- Topic: Functie injectiva
- Replies: 1
- Views: 287
Functie injectiva
Exista functii injective \( f:R \rightarrow R \), astfel incat:
\( 3f^3(x^5-x^4+x^3) - f^2(x^5-x^4+x^3) \ge f^4(x)+4,\forall x \in R \)?
\( 3f^3(x^5-x^4+x^3) - f^2(x^5-x^4+x^3) \ge f^4(x)+4,\forall x \in R \)?
- Tue Apr 07, 2009 7:53 pm
- Forum: Clasa a IX-a
- Topic: Problema geometrie cu un patrulater
- Replies: 1
- Views: 379
Problema geometrie cu un patrulater
Patrulaterul \( ADCD \) are doua laturi opuse paralele. Fie \( M \) si \( N \) mijloacele laturilor \( [DC] \), respectiv \( [BC] \) iar \( \{P\}=AM \cap DN \). Daca \( \frac{PM}{AP}=\frac{1}{4} \), atunci patrulaterul \( ABCD \)este paralelogram.
ONM 1997
Exista o rezolvare cu geometrie analitica ?
ONM 1997
Exista o rezolvare cu geometrie analitica ?
- Sat Apr 04, 2009 1:23 pm
- Forum: Clasa a IX-a
- Topic: Concursul Interjudetean Memorial ,,Preda Filofteia"
- Replies: 1
- Views: 397
Concursul Interjudetean Memorial ,,Preda Filofteia"
1. a) Fie a>0,b>0 doua numere reale. Sa se arate ca : \frac{x^2}{a}+\frac{y^2}{b}\ge\frac{{(x+y)}^2}{a+b};x,y \in R. b) Daca a,b,c>1;a,b,c \in R , sa se arate ca : \frac{a^2}{b-1}+\frac{b^2}{c-1}+\frac{c^2}{a-1}\ge12. 2. Fie {(a_n)}_{n\ge1} o progresie aritmetica in care primul termen si ratia sunt ...
- Tue Mar 31, 2009 7:10 pm
- Forum: Clasa a IX-a
- Topic: Inegalitate
- Replies: 1
- Views: 285
Inegalitate
\( Fie\ x,y,z>0. \)
\( Sa\ se\ demonstreze\ ca\ : \)
\( \frac{xy}{xy+x+y}+\frac{yz}{yz+y+z}+\frac{zx}{zx+z+x} \le\frac{2}{3}+\frac{x^2+y^2+z^2}{9} \)
\( Sa\ se\ demonstreze\ ca\ : \)
\( \frac{xy}{xy+x+y}+\frac{yz}{yz+y+z}+\frac{zx}{zx+z+x} \le\frac{2}{3}+\frac{x^2+y^2+z^2}{9} \)
- Tue Mar 31, 2009 6:56 pm
- Forum: Clasa a IX-a
- Topic: Inegalitate conditionata in triunghi
- Replies: 2
- Views: 414
Inegalitate conditionata in triunghi
Fie \( a,b,c \ge 0 \) si \( a^2 + b^2 + c^2 + abc = 4 \) astfel incat exista triunghiul ABC in care \( a=2\cos A,\ b=2\cos B,\ c=2\cos C. \) Sa se demonstreze ca \( a+b+c\le3. \)
- Sun Mar 15, 2009 1:51 pm
- Forum: Clasa a 9-a
- Topic: Functie gradul I interesanta
- Replies: 1
- Views: 388
Functie gradul I interesanta
\( Se\ considera\ functia\ f:\mathbb{R}- \mathbb{Q} \rightarrow \mathbb{R},f(x)=ax+b,a\not=0. \)
\( Sa\ se\ arate\ ca\ functia\ f\ are\ cel\ putin\ o\ valoare\ irationala. \)
\( Sa\ se\ arate\ ca\ functia\ f\ are\ cel\ putin\ o\ valoare\ irationala. \)
- Sun Mar 08, 2009 6:23 pm
- Forum: Clasa a V-a
- Topic: Problema de olimpiada cls 5a
- Replies: 3
- Views: 541
Problema de olimpiada cls 5a
\( a) \)Aflati ultima cifra a numarului : \( N\ =\ 1\ \cdot\ 3\ \cdot\ 5\ ...\ \cdot\ 99. \)
\( b) \)In cate cifre de \( 0 \) se termina numarul : \( N\ =\ 1\ \cdot\ 2\ \cdot\ 3\ \cdot\ ...\ \cdot\ 100\ ? \)
\( b) \)In cate cifre de \( 0 \) se termina numarul : \( N\ =\ 1\ \cdot\ 2\ \cdot\ 3\ \cdot\ ...\ \cdot\ 100\ ? \)
- Sun Mar 08, 2009 5:40 pm
- Forum: Clasa a 5-a
- Topic: Sisteme de ecuatii
- Replies: 3
- Views: 805
2)\ 3a-b=17\ \rightarrow\ a \ =\ \frac{17+b}{3} \ a+3b=29\ \rightarrow\ a \ =\ 29-3b Egalam\ relatiile\ obtinute\ : \ \frac{17+b}{3}\ =\ 29\ -\ 3b\ \rightarrow\ 17+b=87-9b\ \rightarrow\ 10b=87-17\ \rightarrow\ 10b=70\ \rightarrow\ b=7 Inlocuim\ :\ a+21=29\ \rightarrow\ a=8. 3)\ 10a-b=30\ \rightarro...
- Sun Mar 08, 2009 5:20 pm
- Forum: Clasa a 5-a
- Topic: Divizibil cu 3
- Replies: 3
- Views: 763
- Sat Mar 07, 2009 8:42 pm
- Forum: Clasa a IX-a
- Topic: Subiectul 3 OJM IX 2009
- Replies: 9
- Views: 893
A fost o problema destul de ciudata, pentru ca nu se putea aplica DIRECT alta inegalitate cunoscuta... trebuia sa prelucrezi putin. Eu am incercat sa inlocuiesc in \frac{a^2}{x} + \frac{b^2}{y} \ge \frac{(a+b)^2}{x+y} pe a cu \sqrt{a^3} pe b cu \sqrt{b^3} , pe x cu x^2 si pe y cu y^2 si sa compar fr...