Ecuatie trigonometrica

Post Reply
User avatar
Al3xx
Euclid
Posts: 35
Joined: Fri Nov 07, 2008 10:39 pm
Location: Slatina

Ecuatie trigonometrica

Post by Al3xx »

Sa se determine \( x,y \in R \) stiind ca:


\( tg^4x + tg^4y +2ctg^2x ctg^2y = 3+sin^2(x+y) \)
Virgil Nicula
Euler
Posts: 622
Joined: Fri Sep 28, 2007 11:23 pm

Post by Virgil Nicula »

\( \tan^4x+\tan^4y+\frac {2}{\tan^2x\tan^2y}=\left(\tan^2x-\tan^2y\right)^2+2\left(\tan^2x\tan^2y+\frac {1}{\tan^2x\tan^2y}\right)\ge 4\ge 3+\sin^2(x+y) \) .

Deci solutiile ecuatiei date sunt aceleasi cu solutiile sistemului de ecuatii \( \left\|\begin{array}{c}
\tan^2x=\tan^2y=1\\\\\\\\
\sin^2(x+y)=1\end{array}\ \ \)
a.s.o.
Post Reply

Return to “Clasa a 10-a”