JBTST V 2010, Problema 3

Moderators: Laurian Filip, Filip Chindea, Radu Titiu, maky, Cosmin Pohoata

Post Reply
User avatar
Andi Brojbeanu
Bernoulli
Posts: 294
Joined: Sun Mar 22, 2009 6:31 pm
Location: Targoviste (Dambovita)

JBTST V 2010, Problema 3

Post by Andi Brojbeanu »

Fie \( a, b, c \) numere reale cu proprietatea ca \( ab+bc+ca=1 \). Sa se arate ca:
\( \frac{(a+b)^2+1}{c^2+2}+\frac{(b+c)^2+1}{a^2+2}+\frac{(c+a)^2+1}{b^2+2}\ge 3 \).
Last edited by Andi Brojbeanu on Mon May 24, 2010 8:38 pm, edited 1 time in total.
Andi Brojbeanu
profesor, Liceul Teoretic "Lucian Blaga", Cluj-Napoca
Claudiu Mindrila
Fermat
Posts: 520
Joined: Mon Oct 01, 2007 2:25 pm
Location: Targoviste
Contact:

Post by Claudiu Mindrila »

Se foloseste inegalitatea cbs
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
User avatar
Andi Brojbeanu
Bernoulli
Posts: 294
Joined: Sun Mar 22, 2009 6:31 pm
Location: Targoviste (Dambovita)

Post by Andi Brojbeanu »

\( LHS=\sum\frac{(a+b)^2}{c^2+2}+\frac{1}{c^2+2}\stackrel{\small CBS}{\ge} \frac{(a+b+b+c+c+a)^2}{a^2+2+b^2+2+c^2+2}+\frac{(1+1+1)^2}{a^2+2+b^2+2+c^2+2}=\frac{4(a+b+c)^2+9}{a^2+b^2+c^2+6}=\frac{4(a^2+b^2+c^2)+8(ab+bc+ca)+9}{a^2+b^2+c^2+6}\ge \)
\( \ge\frac{3(a^2+b^2+c^2)+(ab+bc+ca)+8(ab+bc+ca)+9}{a^2+b^2+c^2+6}=\frac{3(a^2+b^2+c^2)+1+8+9}{a^2+b^2+c^2+6}=\frac{3(a^2+b^2+c^2+6)}{a^2+b^2+c^2+6}=3=RHS \)
Andi Brojbeanu
profesor, Liceul Teoretic "Lucian Blaga", Cluj-Napoca
Post Reply

Return to “Inegalitati”