Fie \( a, b, c \) numere reale cu proprietatea ca \( ab+bc+ca=1 \). Sa se arate ca:
\( \frac{(a+b)^2+1}{c^2+2}+\frac{(b+c)^2+1}{a^2+2}+\frac{(c+a)^2+1}{b^2+2}\ge 3 \).
JBTST V 2010, Problema 3
Moderators: Laurian Filip, Filip Chindea, Radu Titiu, maky, Cosmin Pohoata
- Andi Brojbeanu
- Bernoulli
- Posts: 294
- Joined: Sun Mar 22, 2009 6:31 pm
- Location: Targoviste (Dambovita)
JBTST V 2010, Problema 3
Last edited by Andi Brojbeanu on Mon May 24, 2010 8:38 pm, edited 1 time in total.
Andi Brojbeanu
profesor, Liceul Teoretic "Lucian Blaga", Cluj-Napoca
profesor, Liceul Teoretic "Lucian Blaga", Cluj-Napoca
-
Claudiu Mindrila
- Fermat
- Posts: 520
- Joined: Mon Oct 01, 2007 2:25 pm
- Location: Targoviste
- Contact:
- Andi Brojbeanu
- Bernoulli
- Posts: 294
- Joined: Sun Mar 22, 2009 6:31 pm
- Location: Targoviste (Dambovita)
\( LHS=\sum\frac{(a+b)^2}{c^2+2}+\frac{1}{c^2+2}\stackrel{\small CBS}{\ge} \frac{(a+b+b+c+c+a)^2}{a^2+2+b^2+2+c^2+2}+\frac{(1+1+1)^2}{a^2+2+b^2+2+c^2+2}=\frac{4(a+b+c)^2+9}{a^2+b^2+c^2+6}=\frac{4(a^2+b^2+c^2)+8(ab+bc+ca)+9}{a^2+b^2+c^2+6}\ge \)
\( \ge\frac{3(a^2+b^2+c^2)+(ab+bc+ca)+8(ab+bc+ca)+9}{a^2+b^2+c^2+6}=\frac{3(a^2+b^2+c^2)+1+8+9}{a^2+b^2+c^2+6}=\frac{3(a^2+b^2+c^2+6)}{a^2+b^2+c^2+6}=3=RHS \)
\( \ge\frac{3(a^2+b^2+c^2)+(ab+bc+ca)+8(ab+bc+ca)+9}{a^2+b^2+c^2+6}=\frac{3(a^2+b^2+c^2)+1+8+9}{a^2+b^2+c^2+6}=\frac{3(a^2+b^2+c^2+6)}{a^2+b^2+c^2+6}=3=RHS \)
Andi Brojbeanu
profesor, Liceul Teoretic "Lucian Blaga", Cluj-Napoca
profesor, Liceul Teoretic "Lucian Blaga", Cluj-Napoca