Expresii luand numai valori prime
Moderators: Filip Chindea, Andrei Velicu, Radu Titiu
- Filip Chindea
- Newton
- Posts: 324
- Joined: Thu Sep 27, 2007 9:01 pm
- Location: Bucharest
Expresii luand numai valori prime
Fie \( f \in \mathbb{Z}[X] \) pentru care oricare ar fi \( n \in \mathbb{Z} \), \( |\tilde{f}(n)| \) este prim. Aratati ca \( f \) este constant.
Life is complex: it has real and imaginary components.
- Filip Chindea
- Newton
- Posts: 324
- Joined: Thu Sep 27, 2007 9:01 pm
- Location: Bucharest
Solutie. Notam \( p = |\tilde{f}(1)| \). Avem ca \( m \equiv 1 \pmod{p} \) implica \( \tilde{f}(m) \equiv \tilde{f}(1) \equiv 0 \pmod{p} \), deci \( \tilde{f}(m) = \pm p \). In particular, exista un semn pentru care avem o infinitate de \( m \) satisfacând aceasta egalitate. Astfel ori \( f(m) - p \), ori \( f(m) + p \) are o infinitate de radacini, deci este identic nul, de unde \( f \equiv \pm p \), ceea ce trebuia aratat.
Life is complex: it has real and imaginary components.