Sirul lui Lalescu
Moderators: Bogdan Posa, Laurian Filip, Beniamin Bogosel, Radu Titiu, Marius Dragoi
- Cezar Lupu
- Site Admin
- Posts: 612
- Joined: Wed Sep 26, 2007 2:04 pm
- Location: Bucuresti sau Constanta
- Contact:
Sirul lui Lalescu
Sa se calculeze \( \lim_{n\to\infty}\sqrt[n+1]{(n+1)!}-\sqrt[n]{n!} \).
An infinite number of mathematicians walk into a bar. The first one orders a beer. The second orders half a beer. The third, a quarter of a beer. The bartender says “You’re all idiots”, and pours two beers.
- Dragos Fratila
- Newton
- Posts: 313
- Joined: Thu Oct 04, 2007 10:04 pm
Scrii \( a_n=an+c_n \), unde \( c_n \) are proprietatea ca \( c_n/n\to 0 \) (*).
Inlocuiesti \( a_n \) in raportul ala si faci pe-acolo chestii de genul \( (1+1/x)^x \)... dupa care iti da cam asa:
\( \lim (\frac{a_{n+1}}{a_n})^n=e^{(a+c_{n+1}-c_n)/a} \).
Ai din ipoteza ca limita asta exista, deci trebuie ca \( c_{n+1}-c_n \) sa convearga.
Dar \( c_n/n\to 0 \) (asta e (*)) si din Cesaro-Stolz iti rezulta (asta pentru ca \( c_{n+1}-c_n \) are limita si NU pentru ca \( c_n/n\to 0 \)) ca \( c_{n+1}-c_n\to 0 \).
Cu noile informatii inlocuiesti in cerinte si obtii ceea ce vrei.
Inlocuiesti \( a_n \) in raportul ala si faci pe-acolo chestii de genul \( (1+1/x)^x \)... dupa care iti da cam asa:
\( \lim (\frac{a_{n+1}}{a_n})^n=e^{(a+c_{n+1}-c_n)/a} \).
Ai din ipoteza ca limita asta exista, deci trebuie ca \( c_{n+1}-c_n \) sa convearga.
Dar \( c_n/n\to 0 \) (asta e (*)) si din Cesaro-Stolz iti rezulta (asta pentru ca \( c_{n+1}-c_n \) are limita si NU pentru ca \( c_n/n\to 0 \)) ca \( c_{n+1}-c_n\to 0 \).
Cu noile informatii inlocuiesti in cerinte si obtii ceea ce vrei.
"Greu la deal cu boii mici..."