Functie continua, f(x)=integrala, atunci f=0

Moderators: Bogdan Posa, Beniamin Bogosel, Marius Dragoi

Post Reply
User avatar
Cezar Lupu
Site Admin
Posts: 612
Joined: Wed Sep 26, 2007 2:04 pm
Location: Bucuresti sau Constanta
Contact:

Functie continua, f(x)=integrala, atunci f=0

Post by Cezar Lupu »

Daca \( f:\mathbb{R}\to\mathbb{R} \) este o functie continua cu proprietatea ca \( f(x)=\int_0^{\sin x} f(t)dt, \forall x\in\mathbb{R} \).
Sa se arate ca \( f(x)=0, \forall x\in\mathbb{R} \).
An infinite number of mathematicians walk into a bar. The first one orders a beer. The second orders half a beer. The third, a quarter of a beer. The bartender says “You’re all idiots”, and pours two beers.
aleph
Thales
Posts: 123
Joined: Mon Dec 24, 2007 2:06 am

Post by aleph »

\( f \) este \( 2\pi \)-periodică, deci putem presupune \( x\in [0,2\pi] \).

Avem \( |f(x)|\leq\int_{0}^{x}|f| \)

Fie \( M=\sup \{|f(x)\| : x\in [0,2\pi] \} \).

Rezultă \( |f(x)|\leq Mx \), şi prin recurenţă \( |f(x)|\leq Mx^{n}/n!\rightarrow 0 \) (\( n\rightarrow \infty) \).
Deci \( f=0 \).
Post Reply

Return to “Analiza matematica”