Page 1 of 1
IMAC 2009, Problema 3
Posted: Sun Jun 13, 2010 9:38 pm
by Mr. Ady
Determinati numerele naturale n care verifica relatia: \( 1 + 5^n +6^n = 2^n + 3^n + 7^n \).
Posted: Mon Jun 14, 2010 2:26 pm
by Mateescu Constantin
Sa se rezolve in \( \mathbb N \) ecuatia : \( 1\ +\ 5^n\ +\ 6^n\ =\ 2^n\ +\ 3^n\ +\ 7^n\ . \)
\( n=0 \) ,
\( n=1 \) ,
\( n=2 \) verifica in mod evident enuntul . Sa demonstram ca pentru
\( n\ge 3 \) nu avem solutii .
\( 5^n\ +\ 6^n=5^{n-3}\ \cdot\ 5^3\ +\ 6^{n-3}\ \cdot\ 6^3\ \le\ 7^{n-3}\ \cdot\ 5^3\ +\ 7^{n-3}\ \cdot\ 6^3=7^n\left(\frac{5^3}{7^3}\ +\ \frac{6^3}{7^3}\right)=7^n\ \cdot\ \frac{341}{343}\ <\ 7^n \)
Asadar
\( 5^n\ +\ 6^n\ <\ 7^n \) si cum
\( 1\ <\ 2^n\ +\ 3^n\ \Longrightarrow\ LHS\ <\ RHS\ ,\ n\ge 3 \) . In concluzie
\( n\in\{\ 0\ ,\ 1\ ,\ 2\ \} \) .
Posted: Mon Jun 14, 2010 3:12 pm
by Mr. Ady
Frumoasa rezolvare
