IMAC 2009, Problema 3
Moderators: Laurian Filip, Filip Chindea, maky, Cosmin Pohoata
IMAC 2009, Problema 3
Determinati numerele naturale n care verifica relatia: \( 1 + 5^n +6^n = 2^n + 3^n + 7^n \).
Catană Adrian
Elev la Colegiul Naţional Ienăchiţă-Văcărescu, Târgovişte,
Clasa a 8 a
Elev la Colegiul Naţional Ienăchiţă-Văcărescu, Târgovişte,
Clasa a 8 a
- Mateescu Constantin
- Newton
- Posts: 307
- Joined: Tue Apr 21, 2009 8:17 am
- Location: Pitesti
\( n=0 \) , \( n=1 \) , \( n=2 \) verifica in mod evident enuntul . Sa demonstram ca pentru \( n\ge 3 \) nu avem solutii .Sa se rezolve in \( \mathbb N \) ecuatia : \( 1\ +\ 5^n\ +\ 6^n\ =\ 2^n\ +\ 3^n\ +\ 7^n\ . \)
\( 5^n\ +\ 6^n=5^{n-3}\ \cdot\ 5^3\ +\ 6^{n-3}\ \cdot\ 6^3\ \le\ 7^{n-3}\ \cdot\ 5^3\ +\ 7^{n-3}\ \cdot\ 6^3=7^n\left(\frac{5^3}{7^3}\ +\ \frac{6^3}{7^3}\right)=7^n\ \cdot\ \frac{341}{343}\ <\ 7^n \)
Asadar \( 5^n\ +\ 6^n\ <\ 7^n \) si cum \( 1\ <\ 2^n\ +\ 3^n\ \Longrightarrow\ LHS\ <\ RHS\ ,\ n\ge 3 \) . In concluzie \( n\in\{\ 0\ ,\ 1\ ,\ 2\ \} \) .