Fie \( a,b>1 \). Rezolvati ecuatia:
\( a^{bx}+b^{\frac{a}{x}}=a^b+b^a \).
Marin Chirciu, Pitesti, Shortlist 2005
Shortlist 17
Moderators: Filip Chindea, Andrei Velicu, Radu Titiu
-
Antonache Emanuel
- Euclid
- Posts: 37
- Joined: Sat Feb 28, 2009 4:15 pm
- Location: Targoviste, Dambovita
- Mateescu Constantin
- Newton
- Posts: 307
- Joined: Tue Apr 21, 2009 8:17 am
- Location: Pitesti
Ideea este de a aduce membrul stang al ecuatiei la forma \( a^x+a^{\frac bx} \) , deoarece stim monotonia functiei
\( f\ :\ (0\ ,\ \infty)\to\mathbb{R}\ ,\ f(x)=a^x+a^{\frac bx}\ ,\ a\ >\ 1\ :\ \left\|\ \begin{array}
\bullet & f\nearrow & [\sqrt b\ ,\ \infty) \\\\\\\\
\bullet & f\searrow & (0\ ,\ \sqrt b]\ \ \end{array}\right\| \) .
Este usor de vazut ca \( a^{bx}+b^{\frac ax}=(a^b)^x+(a^b)^{\frac{a\log_a b}{bx}}=a^b+b^a \) .
Datorita monotoniei obtinem solutiile \( \overline{\underline{\left\|\ x\in\{\ 1\ ,\ \frac ab\log_ab\ \}\ \right\|}} \) . Evident cazul \( x\le 0 \) nu are solutii .
\( f\ :\ (0\ ,\ \infty)\to\mathbb{R}\ ,\ f(x)=a^x+a^{\frac bx}\ ,\ a\ >\ 1\ :\ \left\|\ \begin{array}
\bullet & f\nearrow & [\sqrt b\ ,\ \infty) \\\\\\\\
\bullet & f\searrow & (0\ ,\ \sqrt b]\ \ \end{array}\right\| \) .
Este usor de vazut ca \( a^{bx}+b^{\frac ax}=(a^b)^x+(a^b)^{\frac{a\log_a b}{bx}}=a^b+b^a \) .
Datorita monotoniei obtinem solutiile \( \overline{\underline{\left\|\ x\in\{\ 1\ ,\ \frac ab\log_ab\ \}\ \right\|}} \) . Evident cazul \( x\le 0 \) nu are solutii .
-
Marius Perianu
- Euclid
- Posts: 40
- Joined: Thu Dec 06, 2007 11:40 pm
- Location: Slatina
Solutie alternativa
Cum \( a,b>1 \), functia \( f\ :\ (0\ ,\ \infty)\to\mathbb{R}\ ,\ f(x)=a^{bx}+b^{\frac ax} \) este convexa, fiind suma a doua functii convexe. Pentru convexitatea functiei \( x \rightarrow b^{\frac ax} \) se foloseste faptul ca daca \( h \) si \( g \) sunt functii convexe, iar \( g \) este crescatoare, atunci \( g \circ h \) este convexa.
Ca urmare, ecuatia \( f(x)=a^b+b^a \) are cel mult doua solutii; se observa \( x_1= 1 \) si \( x_2= \frac ab\log_ab \).
Ca urmare, ecuatia \( f(x)=a^b+b^a \) are cel mult doua solutii; se observa \( x_1= 1 \) si \( x_2= \frac ab\log_ab \).
Marius Perianu