inegalitate rationala

Moderators: Laurian Filip, Filip Chindea, Radu Titiu, maky, Cosmin Pohoata

Post Reply
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

inegalitate rationala

Post by Marius Mainea »

Daca x,y,z sunt pozitive atunci

\( \frac{x}{y^2+yz+z^2}+\frac{y}{z^2+zx+x^2}+\frac{z}{x^2+xy+y^2}\ge\frac{3}{x+y+z} \)

G.M.2009
mihai++
Bernoulli
Posts: 206
Joined: Wed Nov 28, 2007 8:08 pm
Location: Focsani

Post by mihai++ »

\( \sum\frac{x}{y^2+yz+z^2}\geq \frac{(x+y+z)^2}{\sum x(y^2+yz+z^2)}=\frac{(x+y+z)^2}{(x+y+z)(xy+yz+zx)}\geq\frac{3}{x+y+z} \).
n-ar fi rau sa fie bine :)
Post Reply

Return to “Inegalitati”