Sa se calculeze :
\( \lim_{x \to \infty} \)\( \frac{ln(1+a^x)}{ln(1+b^x) \) , a, b \( \epsilon \) (0, \( \infty \)).
As dori sa stiu daca se poate aplica limita \( \lim_{x \to \infty} \)\( \frac{ln(1+u(x))}{u(x)) \) =0.
Limita de functie
- DrAGos Calinescu
- Thales
- Posts: 121
- Joined: Sun Dec 07, 2008 10:00 pm
- Location: Pitesti
Daca \( a,b\in (0,1) \) atunci
\( \frac{\ln(1+a^x)}{\ln(1+b^x)}=\frac{\ln(1+a^x)}{a^x}\cdot\frac{b^x}{{\ln(1+b^x)}}\cdot\frac{a^x}{b^x} \)
Deci \( \lim_{x\to\infty}\frac{\ln(1+a^x)}{\ln(1+b^x)}=\lim_{x\to\infty}\frac{a^x}{b^x} \)
Daca \( a>b \) limita este \( \infty \)
Daca \( a=b \) limita este \( 1 \)
Daca \( a<b \) limita este \( 0 \)
\( \frac{\ln(1+a^x)}{\ln(1+b^x)}=\frac{\ln(1+a^x)}{a^x}\cdot\frac{b^x}{{\ln(1+b^x)}}\cdot\frac{a^x}{b^x} \)
Deci \( \lim_{x\to\infty}\frac{\ln(1+a^x)}{\ln(1+b^x)}=\lim_{x\to\infty}\frac{a^x}{b^x} \)
Daca \( a>b \) limita este \( \infty \)
Daca \( a=b \) limita este \( 1 \)
Daca \( a<b \) limita este \( 0 \)
-
Laurentiu Tucaa
- Thales
- Posts: 145
- Joined: Sun Mar 22, 2009 6:22 pm
- Location: Pitesti
In cazul in care unul dintre a ,b este in (0,1) si celalalt in \( (1,\infty) \),lucrurile sunt clare .
Singurul caz neanalizat este cand \( a,b\in (1,\infty) \) ,iar aici avem \( \lim_{x\to\infty} \frac{ln(1+a^x)}{ln(1+b^x)}=\lim_{x\to\infty}\frac{xlna+ln(1+\frac{1}{a^x})}{xlnb+ln(1+\frac{1}{b^x})}=\frac{lna}{lnb} \) deoarece \( \lim_{x\to\infty} ln(1+\frac{1}{t^x})=0 ,\forall t>1 \)
Singurul caz neanalizat este cand \( a,b\in (1,\infty) \) ,iar aici avem \( \lim_{x\to\infty} \frac{ln(1+a^x)}{ln(1+b^x)}=\lim_{x\to\infty}\frac{xlna+ln(1+\frac{1}{a^x})}{xlnb+ln(1+\frac{1}{b^x})}=\frac{lna}{lnb} \) deoarece \( \lim_{x\to\infty} ln(1+\frac{1}{t^x})=0 ,\forall t>1 \)