Page 1 of 1

Inegalitate cu mediane si inaltimi

Posted: Sat Jan 16, 2010 3:35 pm
by Mateescu Constantin
Aratati ca in orice triunghi \( ABC \) are loc inegalitatea : \( \frac{m_a}{h_a}\ +\ \frac{m_b}{h_b}\ +\ \frac{m_c}{h_c}\ \le\ \frac{4R+r}{3r} \) .

Posted: Sat Jan 16, 2010 4:24 pm
by Virgil Nicula
Se arata mai intai ca \( m_a\le R(1+\cos A) \) etc si \( \sum m_a\le 4R+r \) (cunoscute !). Apoi se aplica inegalitatea Cebasev pentru \( a\nearrow \) si \( m_a\searrow \) . Intr-adevar, \( \sum\frac {m_a}{h_a}=\frac {1}{2S}\cdot\sum am_a=\frac {1}{2pr}\cdot\sum am_a\ \stackrel{\mathrm{CEB}}{\le}\ \frac {1}{6pr}\cdot\sum a\cdot\sum m_a=\frac {1}{3r}\cdot \sum m_a\le\frac {4R+r}{3r} \).

Remarca. Daca triunghiul \( ABC \) este neobtuzunghic, atunci \( \sum\frac {m_a}{h_a}\le\frac {R+r}{r}\le\frac {4R+r}{3r} \).