Inegalitate cu mediane si inaltimi
Moderators: Laurian Filip, Filip Chindea, Radu Titiu, maky, Cosmin Pohoata
- Mateescu Constantin
- Newton
- Posts: 307
- Joined: Tue Apr 21, 2009 8:17 am
- Location: Pitesti
Inegalitate cu mediane si inaltimi
Aratati ca in orice triunghi \( ABC \) are loc inegalitatea : \( \frac{m_a}{h_a}\ +\ \frac{m_b}{h_b}\ +\ \frac{m_c}{h_c}\ \le\ \frac{4R+r}{3r} \) .
-
Virgil Nicula
- Euler
- Posts: 622
- Joined: Fri Sep 28, 2007 11:23 pm
Se arata mai intai ca \( m_a\le R(1+\cos A) \) etc si \( \sum m_a\le 4R+r \) (cunoscute !). Apoi se aplica inegalitatea Cebasev pentru \( a\nearrow \) si \( m_a\searrow \) . Intr-adevar, \( \sum\frac {m_a}{h_a}=\frac {1}{2S}\cdot\sum am_a=\frac {1}{2pr}\cdot\sum am_a\ \stackrel{\mathrm{CEB}}{\le}\ \frac {1}{6pr}\cdot\sum a\cdot\sum m_a=\frac {1}{3r}\cdot \sum m_a\le\frac {4R+r}{3r} \).
Remarca. Daca triunghiul \( ABC \) este neobtuzunghic, atunci \( \sum\frac {m_a}{h_a}\le\frac {R+r}{r}\le\frac {4R+r}{3r} \).
Remarca. Daca triunghiul \( ABC \) este neobtuzunghic, atunci \( \sum\frac {m_a}{h_a}\le\frac {R+r}{r}\le\frac {4R+r}{3r} \).