Fie \( a,\ b,\ c \) numere reale pozitive a. i. \( \frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1. \) Sa se arate ca \( \frac{3}{2}\le\frac{ab-1}{ab+1}+\frac{bc-1}{bc+1}+\frac{ca-1}{ca+1}<2 \).
Mircea Becheanu
Inegalitate conditionata cu \sum \frac{1}{ab}=1
Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea
-
Claudiu Mindrila
- Fermat
- Posts: 520
- Joined: Mon Oct 01, 2007 2:25 pm
- Location: Targoviste
- Contact:
Inegalitate conditionata cu \sum \frac{1}{ab}=1
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)