O ecuatie exponentiala de forma f(x)=f(1/x) admite solutie

Moderators: Filip Chindea, Andrei Velicu, Radu Titiu

Post Reply
User avatar
Cezar Lupu
Site Admin
Posts: 612
Joined: Wed Sep 26, 2007 2:04 pm
Location: Bucuresti sau Constanta
Contact:

O ecuatie exponentiala de forma f(x)=f(1/x) admite solutie

Post by Cezar Lupu »

Fie \( f: (0, \infty)-\{ 1 \} \to\mathbb{R} \), \( f(x)=2^{x+1}+3^{x+1}-6^{x} \). Sa se arate ca ecuatia \( f(x)=f\left(\frac{1}{x}\right) \) admite solutie.

Marius Cavachi, R.M.I. C-ta, 2005
An infinite number of mathematicians walk into a bar. The first one orders a beer. The second orders half a beer. The third, a quarter of a beer. The bartender says “You’re all idiots”, and pours two beers.
Post Reply

Return to “Clasa a X-a”