Sa se determine numerele reale care verifica simultan egalitatile
\( \frac{7y^2+z^2}{x^2+y^2}=\frac{y^2+4}{x}, \frac{7z^2+x^2}{y^2+z^2}=\frac{z^2+4}{y}, \frac{7x^2+y^2}{z^2+x^2}=\frac{x^2+4}{z} \).
Marius Perianu
Concursul Nicolae Coculescu editia 2009 subiectul IV
Moderators: Bogdan Posa, Laurian Filip
- Andi Brojbeanu
- Bernoulli
- Posts: 294
- Joined: Sun Mar 22, 2009 6:31 pm
- Location: Targoviste (Dambovita)
Concursul Nicolae Coculescu editia 2009 subiectul IV
Last edited by Andi Brojbeanu on Sat Nov 28, 2009 6:32 pm, edited 2 times in total.
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
Se observa ca toate numerele sunt pozitive.
Apoi sistemul este echivalent cu
\( (7y^2+z^2)x=(x^2+y^2)(y^2+4) \) si permutari circulare.
Dar aplicand inegalitatea mediilor
\( (7y^2+z^2)x=(x^2+y^2)(y^2+4)\ge2xy(y^2+4) \)
Prin simplificare cu x, \( (7y^2+z^2)\ge2y(y^2+4) \) si apoi prin adunare
\( 8\sum x^2\ge2\sum x^3+8\sum x \)
Insa deoarece \( x^3+4x\ge 2\sqrt{x^3\cdot 4x}=8x^2 \) avem egalitate, de unde \( x=y=z=2 \).
Apoi sistemul este echivalent cu
\( (7y^2+z^2)x=(x^2+y^2)(y^2+4) \) si permutari circulare.
Dar aplicand inegalitatea mediilor
\( (7y^2+z^2)x=(x^2+y^2)(y^2+4)\ge2xy(y^2+4) \)
Prin simplificare cu x, \( (7y^2+z^2)\ge2y(y^2+4) \) si apoi prin adunare
\( 8\sum x^2\ge2\sum x^3+8\sum x \)
Insa deoarece \( x^3+4x\ge 2\sqrt{x^3\cdot 4x}=8x^2 \) avem egalitate, de unde \( x=y=z=2 \).
-
Marius Perianu
- Euclid
- Posts: 40
- Joined: Thu Dec 06, 2007 11:40 pm
- Location: Slatina
Poti sa mai aplici o data inegalitatea mediilor: \( y^2+4 \geq 4y \), de unde rezulta ca \( x(7y^2+z^2) \geq 8xy^2 \).Marius Mainea wrote: Dar aplicand inegalitatea mediilor \( (7y^2+z^2)x=(x^2+y^2)(y^2+4)\ge2xy(y^2+4) \)
Prin simplificare cu \( x \), obţinem \( 7y^2+z^2 \geq 8y^2 \), deci \( z^2 \geq y^2 \). Analog rezulta \( y^2 \geq x^2 \) si \( x^2 \geq z^2 \), deci \( x^2=y^2=z^2 \), adica \( x=y=z \).
Marius Perianu