Inegalitate conditionata cu produs

Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea

Post Reply
alex2008
Leibniz
Posts: 464
Joined: Sun Oct 19, 2008 3:23 pm
Location: Tulcea

Inegalitate conditionata cu produs

Post by alex2008 »

Fie \( x,y,z>0 \) astfel incat \( xyz=1 \). Sa se demonstreze ca :

\( \sum_{cyc}\sqrt{\frac{1}{1+x}}\le \frac{3\sqrt{2}}{2} \)
. A snake that slithers on the ground can only dream of flying through the air.
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

Notam \( f(x,y,z)=\sum_{cyc}\sqrt{\frac{1}{1+x^2}} \) si inegalitatea este echivalenta cu

\( f(x,y,z)\le\frac{3\sqrt{2}}{2} \) cu \( xyz=1 \)

Putem presupune ca \( xy\le1 \).

Atunci \( f(x,y,z)\le f(\sqrt{xy},\sqrt{xy},z)\le \frac{3\sqrt{2}}{2} \)
Post Reply

Return to “Clasa a IX-a”