Sir subconvex

Moderators: Bogdan Posa, Laurian Filip, Beniamin Bogosel, Radu Titiu, Marius Dragoi

Post Reply
opincariumihai
Thales
Posts: 134
Joined: Sat May 09, 2009 7:45 pm
Location: BRAD

Sir subconvex

Post by opincariumihai »

Fie \( (x_n) \) un sir marginit si \( a\geq1 \) astfel incat \( x_{n+2}\leq(1-a)x_{n+1}+ax_n \). Aratati ca sirul este convergent.

Dan Marinescu
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

Daca \( a=1 \) nu merge.

Daca in enunt punem \( a>-1 \), \( a\neq 1 \), \( x_{n+2}\le (1+a)x_{n+1}-ax_n \) si \( (x_n) \) marginit, atunci merge.
opincariumihai
Thales
Posts: 134
Joined: Sat May 09, 2009 7:45 pm
Location: BRAD

Post by opincariumihai »

Banuiesc ca ar fi fost corect \( a<1 \).
Post Reply

Return to “Analiza matematica”