Page 1 of 1

Minim si maxim de |z|

Posted: Sat Aug 29, 2009 1:07 am
by Mateescu Constantin
Fie \( a>0 \) si \( z\in\mathbb{C}^{\ast} \) pentru care \( \left|z+\frac 1z \right|=a \) . Sa se determine valorile exteme ale lui \( |z| \) .

Re: Minim si maxim de |z|

Posted: Sat Aug 29, 2009 10:55 pm
by opincariumihai
\( a^2=|z+1/z|^2=\frac{|z|^4+1-2|z|^2+4(Rez)^2}{|z|^2} \) de unde
\( |z|^4+1-(a^2+2)|z|^2=-4(Rez)^2\leq0 \) .Dupa efectuarea calculelor obtin ca \( |z| \in [ \frac{-a+\sqrt{a^2+4}}{2} , \frac{a+\sqrt{a^2+4}}{2}] \)