A=60 <=> IH=IO
Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea
-
Virgil Nicula
- Euler
- Posts: 622
- Joined: Fri Sep 28, 2007 11:23 pm
A=60 <=> IH=IO
Sa se arate ca in \( \triangle ABC \) avem echivalenta \( \overline{\underline{\left\|\ A=60^{\circ}\ \Longleftrightarrow\ IH=IO\ \right\|}} \) si in acest caz \( \underline{\overline{\left\|\ \sin (\widehat {IOH}) = \frac 12\cdot\sqrt {1 - \frac {2r}{R}}\ \right\|}} \) .
- Mateescu Constantin
- Newton
- Posts: 307
- Joined: Tue Apr 21, 2009 8:17 am
- Location: Pitesti
Ecuatia \( f(x)= p\cdot x^3-(4R+r)\cdot x^2+p\cdot x-r=0 \) are solutiile \( \left\{\ \tan\frac A2\ ,\ \tan\frac B2\ ,\ \tan\frac C2\ \right\} \).Virgil Nicula wrote: \( \overline{\underline{\left\|\ A=60^{\circ}\ \Longleftrightarrow\ IH=IO\ \right\|}} \)
Asadar, \( A=60^{\circ}\ \Longleftrightarrow\ f\left(\frac{\sqrt 3}{3}\right)\ =\ 0\ \Longleftrightarrow\ \overline{\underline{\left\|{\ p=\sqrt{3}(R+r)\ \right\| \)
Dar in orice triunghi sunt adevarate relatiile \( \overline{\underline{\left\|\begin{array}{cc}
OI^2 & = & R^2-2Rr \\\\\\\
IH^2 & = & 4R(R+r)+3r^2-p^2\end{array}\right\| \) .
\( \Longrightarrow\ IH=IO\ \Longleftrightarrow\ R^2-2Rr=4R(R+r)+3r^2-p^2 \)
\( \Longleftrightarrow\ p^2=3R^2+6Rr+3r^2\ \Longleftrightarrow\ \overline{\underline{\left\|{\ p=\sqrt{3}(R+r)\ \right\| \)
Prin urmare avem \( \overline{\underline{\left\|\ A=60^{\circ}\ \Longleftrightarrow\ IH=IO\ \right\|}} \).
Avem \( \angle BHC=\angle BIC=\angle BOC=120^{\circ} \), adica punctele \( B,\ H,\ I,\ O,\ C \) sunt conciclice \( (*) \)Virgil Nicula wrote:\( \underline{\overline{\left\|\ \sin (\widehat {IOH}) = \frac 12\cdot\sqrt {1 - \frac {2r}{R}}\ \right\|}} \)
Din teorema sinusurilor aplicata in \( \triangle IBO\ \Longrightarrow\ \frac{IO}{\sin(\angle IBO)}=\frac{OB}{\sin(\angle BIO)} \)
\( \Longleftrightarrow\ \sin(\angle IBO)=^{(*)} \sin(\angle IHO)=\sin(\angle IOH)=\frac{\sqrt{R^2-2Rr}\cdot\sin(\angle BIO)}{R} \)
\( \Longleftrightarrow^{(*)}\ \sin(\angle IOH)=\frac{\sqrt{R^2-2Rr}\cdot\sin(\angle BCO)}{R}=\frac 12\cdot \frac{\sqrt{R^2-2Rr}}{R} \)
\( \Longleftrightarrow\ \underline{\overline{\left\|\ \sin (\angle {IOH}) = \frac 12\cdot\sqrt {1 - \frac {2r}{R}}\ \right\|}} \)