Page 1 of 1
Doua inegalitati pentru numere pozitive a, b, c
Posted: Tue Jun 23, 2009 9:21 pm
by Andi Brojbeanu
1 Fie \( p, q \) numere reale pozitive astfel incat \( p+q=1 \). Sa se arate ca:
\( \frac{a}{pb+qc}+\frac{b}{pc+qa}+\frac{c}{pa+qb}\geq 3 \), oricare ar fi numerele pozitive a, b, c.
2. Fie \( a, b, c \) numere pozitive. Sa se arate ca:
\( (a^3+1)(b^3+1)(c^3+1)\geq (a^2b+1)(b^2c+1)(c^2a+1). \)
Posted: Tue Jun 23, 2009 11:17 pm
by alex2008
1)Folosim Cauchy-Schwartz si inegalitatea devine \( (a+b+c)^2\ge 3(ab+bc+ca) \)
2)Solutia 1. Presupunem \( a\le b\le c \) si avem ca :
\(
(a^3+1)(b^3+1)\ge (a^2b+1)(b^2a+1)\Leftrightarrow (a-b)^2(a+b)\ge 0 \)
Deci ramane de demonstrat ca : \( (b^2a+1)(c^3+1)\ge (b^2c+1)(c^2a+1)\Leftrightarrow (c-a)(c-b)(c+b)\ge0 \)
Posted: Tue Jun 23, 2009 11:24 pm
by alex2008
2)Solutia 2.Demonstram ca :
\( (a^3+1)^2(b^3+1)\ge (a^2b+1)^3\Leftrightarrow a^6+2a^3+2a^3b^3+b^3\ge 3a^4b^2+3a^2b \) , care rezulta din \( AM-GM \) :
\( a^3+a^3+b^3\ge 3a^2b \)
\( a^6+a^3b^3+a^3b^3\ge 3a^4b^2 \)
Posted: Wed Jun 24, 2009 12:23 am
by Marius Mainea
Solutia 3) (o alta interpretare a solutiei 2)
Folosim inegalitatea lui Holder:
\( (a^2b+1)^3=(a\cdot a\cdot b+1\cdot 1\cdot 1)^3\le(a^3+1)(a^3+1)(b^3+1) \) si inca doua relatii analoage.
Le inmultim apoi si gata.