1 Fie \( p, q \) numere reale pozitive astfel incat \( p+q=1 \). Sa se arate ca:
\( \frac{a}{pb+qc}+\frac{b}{pc+qa}+\frac{c}{pa+qb}\geq 3 \), oricare ar fi numerele pozitive a, b, c.
2. Fie \( a, b, c \) numere pozitive. Sa se arate ca:
\( (a^3+1)(b^3+1)(c^3+1)\geq (a^2b+1)(b^2c+1)(c^2a+1). \)
Doua inegalitati pentru numere pozitive a, b, c
Moderators: Bogdan Posa, Laurian Filip
- Andi Brojbeanu
- Bernoulli
- Posts: 294
- Joined: Sun Mar 22, 2009 6:31 pm
- Location: Targoviste (Dambovita)
1)Folosim Cauchy-Schwartz si inegalitatea devine \( (a+b+c)^2\ge 3(ab+bc+ca) \)
2)Solutia 1. Presupunem \( a\le b\le c \) si avem ca :
\(
(a^3+1)(b^3+1)\ge (a^2b+1)(b^2a+1)\Leftrightarrow (a-b)^2(a+b)\ge 0 \)
Deci ramane de demonstrat ca : \( (b^2a+1)(c^3+1)\ge (b^2c+1)(c^2a+1)\Leftrightarrow (c-a)(c-b)(c+b)\ge0 \)
2)Solutia 1. Presupunem \( a\le b\le c \) si avem ca :
\(
(a^3+1)(b^3+1)\ge (a^2b+1)(b^2a+1)\Leftrightarrow (a-b)^2(a+b)\ge 0 \)
Deci ramane de demonstrat ca : \( (b^2a+1)(c^3+1)\ge (b^2c+1)(c^2a+1)\Leftrightarrow (c-a)(c-b)(c+b)\ge0 \)
. A snake that slithers on the ground can only dream of flying through the air.
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)