Multime fara patrate perfecte

Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea

Post Reply
Claudiu Mindrila
Fermat
Posts: 520
Joined: Mon Oct 01, 2007 2:25 pm
Location: Targoviste
Contact:

Multime fara patrate perfecte

Post by Claudiu Mindrila »

Demonstrati ca multimea \( \left\{ \left[k+\sqrt{k}+\frac{1}{2}\right]\ |n\in\mathbb{N}^{*}\right\} \) nu contine patrate perfecte.
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
User avatar
Mateescu Constantin
Newton
Posts: 307
Joined: Tue Apr 21, 2009 8:17 am
Location: Pitesti

Post by Mateescu Constantin »

Fie \( m\in \mathbb{N^{\ast}} \), astfel incat \( m\notin\left\{\left\[k+\sqrt{k}+\frac{1}{2}\right\]|k\in\mathbb{N^{\ast}}\right\} \)
Deoarece functia \( f(n)=n+\sqrt{n}+\frac{1}{2},\ \ f\ :\ [0,\ \infty)\rightarrow \mathbb{R} \) este strict crescatoare si \( f(0)=\frac{1}{2} \), deducem ca exista \( n\in\mathbb{N} \) astfel incat
\( n+\sqrt{n}+\frac{1}{2}<m\leq n+1+\sqrt{n+1}+\frac{1}{2} \).
Din cele de mai sus \( m\le \left\[n+1+\sqrt{n+1}+\frac{1}{2}\right\] \). Dar \( m\neq \left\[n+1+\sqrt{n+1}+\frac{1}{2}\right\] \) conform presupunerii facute si rezulta ca \( m+1\le \left\[n+1+\sqrt{n+1}+\frac{1}{2}\right\]\le n+1+\sqrt{n+1}+\frac{1}{2}. \)
Deducem inegalitatile \( \sqrt{n}+\frac{1}{2}<m-n\le \sqrt{n+1}+\frac{1}{2} \).
Notand \( t=m-n\in \mathbb{Z} \), obtinem ca \( n<\left\(t-\frac{1}{2}\right\)^2\le n+1,\ -\frac{1}{4}<t^2-t-n\le \frac{3}{4} \)
Cum \( t^2-t-n\in \mathbb{Z} \), din ultimele inegalitati deducem ca \( t^2-t-n=0,\ n=t^2-t,\ m=n+t=t^2 \), de unde concluzia.
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

Ai demonstrat doar ca in afara multimii sunt patrate perfecte.

Mai ai de demonstrat ca sunt toate patratele perfecte. :wink:

Sau faci altfel:

Presupui ca \( [k+\sqrt{k}+\frac{1}{2}]=m^2 \)

Atunci \( \frac{\sqrt{4m^2+1}-1}{2}\le \sqrt{k}<\frac{\sqrt{4m^2+3}-1}{2} \)

Ceea ce este fals deoarece \( [\(\frac{\sqrt{4m^2+1}-1}{2}\)^2]=[\(\frac{\sqrt{4m^2+3}-1}{2}\)^2] \)

In felul acesta amandoi am demonstrat ca multimea contine toate numerele care nu sunt patrate perfecte.
Post Reply

Return to “Clasa a IX-a”