1. Sa se arate ca intr-un triunghi \( A \)-dreptunghic \( ABC \) avem \( \overline{\underline{\left\|\ h_a+\max\{b,c\}\le \frac {3a\sqrt 3}{4}\ \right\|}} \) (Virgil Nicula).
2. Fie numerele pozitive \( x \), \( y \), \( z \), \( t \) pentru care \( x^2+y^2=z^2+t^2=1 \).
Sa se arate ca \( xz\ +\ yt\ +\ \max\ \{\ x+t\ ,\ y+z\ \}\ \le\ \frac {3\sqrt 3}{2} \) (Virgil Nicula).
Incercati si o interpretare/solutie geometrica !
Inegalitati (geometrica/algebrica) conditionate
Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea
-
Virgil Nicula
- Euler
- Posts: 622
- Joined: Fri Sep 28, 2007 11:23 pm
- Mateescu Constantin
- Newton
- Posts: 307
- Joined: Tue Apr 21, 2009 8:17 am
- Location: Pitesti
1. Presupunem ca \( b=\max\{b,\ c\} \) si fie \( D=\mbox{sim_{BC}A} \).
In \( \triangle ACD \) aplicam inegalitatea lui Mitrinovic si avem:
\( \frac{AD+DC+CA}{2}\le \frac{3\sqrt{3}}{2}R_{ADC}\Longleftrightarrow \frac{2h_a+2b}{2}\le \frac{3\sqrt{3}}{2}\cdot\frac{a}{2}\Longleftrightarrow h_a+\max\{b,\ c\}\le \frac{3a\sqrt{3}}{4} \).
In \( \triangle ACD \) aplicam inegalitatea lui Mitrinovic si avem:
\( \frac{AD+DC+CA}{2}\le \frac{3\sqrt{3}}{2}R_{ADC}\Longleftrightarrow \frac{2h_a+2b}{2}\le \frac{3\sqrt{3}}{2}\cdot\frac{a}{2}\Longleftrightarrow h_a+\max\{b,\ c\}\le \frac{3a\sqrt{3}}{4} \).
Last edited by Mateescu Constantin on Fri Jun 19, 2009 10:43 am, edited 1 time in total.
-
Virgil Nicula
- Euler
- Posts: 622
- Joined: Fri Sep 28, 2007 11:23 pm