Suma variabilelor este egala cu suma inverselor lor

Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea

Post Reply
alex2008
Leibniz
Posts: 464
Joined: Sun Oct 19, 2008 3:23 pm
Location: Tulcea

Suma variabilelor este egala cu suma inverselor lor

Post by alex2008 »

Fie \( a,b,c \) trei numere pozitive astfel incat \( a+b+c=\frac{1}{a}+\frac{1}{b}+\frac{1}{c} \) . Daca \( a\le b\le c \), atunci \( ab^2c^3\ge 1 \).
. A snake that slithers on the ground can only dream of flying through the air.
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

Folosind ipoteza \( 3c\ge a+b+c=\frac{1}{a} +\frac{1}{b}+\frac{1}{c}\ge\frac{3}{c} \) deci \( c\ge 1 \)

Deasemenea \( 3a\le a+b+c=\frac{1}{a} +\frac{1}{b}+\frac{1}{c}\le\frac{3}{a} \) deci \( a\le 1 \)

Din relatia data \( a-\frac{1}{a}=(b+c)(\frac{1}{bc}-1) \) deci \( bc\ge1 \) (*)

\( c-\frac{1}{c}=(a+b)(\frac{1}{ab}-1) \) deci \( ab\le 1 \)

Deasamenea \( c-\frac{1}{c}=(a+b)(\frac{1}{ab}-1)\ge2\sqrt{ab}(\frac{1}{ab}-1)=2(\frac{1}{\sqrt{ab}}-\sqrt{ab})\ge\frac{1}{\sqrt{ab}}-\sqrt{ab} \) de unde \( c\ge\frac{1}{ \sqrt{ab}} \) (**)

Din (*) si (**) rezulta concluzia.
Post Reply

Return to “Clasa a IX-a”