Conditionata cu raport de suma de cuburi

Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea

Post Reply
alex2008
Leibniz
Posts: 464
Joined: Sun Oct 19, 2008 3:23 pm
Location: Tulcea

Conditionata cu raport de suma de cuburi

Post by alex2008 »

Fie \( a,b,c,d\ge 0 \) astfel incat \( \frac{a^3+b^3}{a+b}=\frac{c^3+d^3}{c+d} \) . Sa se demonstreze ca :

\( (a+b)(c+d)\ge 2(ab+cd) \)
. A snake that slithers on the ground can only dream of flying through the air.
User avatar
Mateescu Constantin
Newton
Posts: 307
Joined: Tue Apr 21, 2009 8:17 am
Location: Pitesti

Post by Mateescu Constantin »

Conditia din enunt este echivalenta cu \( a^2-ab+b^2=c^2-cd+d^2 \)
Fie \( x=a^2-ab+b^2=c^2-cd+d^2 \). Fara a restrande generalitatea sa presupunem ca \( ab\ge cd \).
\( \Longrightarrow \left\{ \begin x\ge ab\ge cd\\ (a+b)^2=x+3ab \\ (c+d)^2=x+3cd \)

Ridicand la patrat inegalitatea de demonstrat devine
\( (x+3ab)(x+3cd)\ge 4(ab+cd)^2 \)
\( \Longrightarrow (x+3ab)(x+3cd)-4(ab+cd)^2\ge 4ab(ab+3cd)-4(ab+cd)^2=4cd(ab-cd)\ge 0 \)

Egalitatea are loc pentru \( (a,\ b,\ c,\ d)\sim (1,\ 1,\ 1,\ 1) \) si \( (a,\ b,\ c,\ d)\sim (0,\ 1,\ 1,\ 1) \) sau permutarile lor ciclice.
Post Reply

Return to “Clasa a IX-a”