Fie \( a,b,c,d\ge 0 \) astfel incat \( \frac{a^3+b^3}{a+b}=\frac{c^3+d^3}{c+d} \) . Sa se demonstreze ca :
\( (a+b)(c+d)\ge 2(ab+cd) \)
Conditionata cu raport de suma de cuburi
Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea
Conditionata cu raport de suma de cuburi
. A snake that slithers on the ground can only dream of flying through the air.
- Mateescu Constantin
- Newton
- Posts: 307
- Joined: Tue Apr 21, 2009 8:17 am
- Location: Pitesti
Conditia din enunt este echivalenta cu \( a^2-ab+b^2=c^2-cd+d^2 \)
Fie \( x=a^2-ab+b^2=c^2-cd+d^2 \). Fara a restrande generalitatea sa presupunem ca \( ab\ge cd \).
\( \Longrightarrow \left\{ \begin x\ge ab\ge cd\\ (a+b)^2=x+3ab \\ (c+d)^2=x+3cd \)
Ridicand la patrat inegalitatea de demonstrat devine
\( (x+3ab)(x+3cd)\ge 4(ab+cd)^2 \)
\( \Longrightarrow (x+3ab)(x+3cd)-4(ab+cd)^2\ge 4ab(ab+3cd)-4(ab+cd)^2=4cd(ab-cd)\ge 0 \)
Egalitatea are loc pentru \( (a,\ b,\ c,\ d)\sim (1,\ 1,\ 1,\ 1) \) si \( (a,\ b,\ c,\ d)\sim (0,\ 1,\ 1,\ 1) \) sau permutarile lor ciclice.
Fie \( x=a^2-ab+b^2=c^2-cd+d^2 \). Fara a restrande generalitatea sa presupunem ca \( ab\ge cd \).
\( \Longrightarrow \left\{ \begin x\ge ab\ge cd\\ (a+b)^2=x+3ab \\ (c+d)^2=x+3cd \)
Ridicand la patrat inegalitatea de demonstrat devine
\( (x+3ab)(x+3cd)\ge 4(ab+cd)^2 \)
\( \Longrightarrow (x+3ab)(x+3cd)-4(ab+cd)^2\ge 4ab(ab+3cd)-4(ab+cd)^2=4cd(ab-cd)\ge 0 \)
Egalitatea are loc pentru \( (a,\ b,\ c,\ d)\sim (1,\ 1,\ 1,\ 1) \) si \( (a,\ b,\ c,\ d)\sim (0,\ 1,\ 1,\ 1) \) sau permutarile lor ciclice.