Inegalitate in numere pozitive

Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea

Post Reply
User avatar
Mateescu Constantin
Newton
Posts: 307
Joined: Tue Apr 21, 2009 8:17 am
Location: Pitesti

Inegalitate in numere pozitive

Post by Mateescu Constantin »

Fie \( a,\ b,\ c \) numere reale pozitive. Aratati ca

\( 4\le \frac{a+b+c}{\sqrt[3]{abc}}+\frac{8abc}{(a+b)(b+c)(c+a)}. \)

M.R. 3/2009
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

\( RHS=\frac{a+b+c}{3\sqrt[3]{abc}}+\frac{a+b+c}{3\sqrt[3]{abc}}+\frac{a+b+c}{3\sqrt[3]{abc}}+\frac{8abc}{(a+b)(b+c)(c+a)}\ge4\sqrt[4]{\frac{(a+b+c)^38abc}{27abc(a+b)(b+c)(c+a)}}\ge LHS \) deoarece

\( (a+b)+(b+c)+(c+a)\ge 3\sqrt[3]{(a+b)(b+c)(c+a)} \)
Post Reply

Return to “Clasa a IX-a”