Sa se determine valoarea maxima a parametrului \( \alpha>0 \) pentru care are loc inegalitatea: \( \frac{b^{2}+c^{2}}{a}+\frac{c^{2}+a^{2}}{b}+\frac{a^{2}+b^{2}}{c}\ge\alpha\sqrt{3\left(a^{2}+b^{2}+c^{2}\right)} \), pentru orice \( a,\ b,\ c>0 \)
I. V. Maftei
Valoarea maxima a parametrului
Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea
-
Claudiu Mindrila
- Fermat
- Posts: 520
- Joined: Mon Oct 01, 2007 2:25 pm
- Location: Targoviste
- Contact:
Valoarea maxima a parametrului
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
\( \alpha=2 \)
Pentru \( \alpha=2 \) si a=b=c are loc egalitatea.
Pentru \( \alpha =2 \) inegalitatea este adevarata.
Justificare:
Solutia 1:
\( LHS\ge \sum \frac{2bc}{a}\ge2\sqrt{3\sum \frac{bc}{a}\frac{ca}{b}}=RHS \)
Solutia 2:
Aducand la acelasi numitor si ridicand la patrat inegalitatea este echivalenta cu :
\( \sum_{sym} a^6b^2+\sum_{sym}a^6bc+\sum_{sym}a^3b^3c^2+\sum_{sym}a^4b^4+2\sum_{sym}{a^4b^3c\ge6\sum_{sym}a^4b^2c^2 \) care este adevarata din Muerhead si AM-GM
De exemplu \( a^6b^2+a^3b^3c^2+a^3b^3c^2\ge 3a^4b^2c^2 \)
Pentru \( \alpha=2 \) si a=b=c are loc egalitatea.
Pentru \( \alpha =2 \) inegalitatea este adevarata.
Justificare:
Solutia 1:
\( LHS\ge \sum \frac{2bc}{a}\ge2\sqrt{3\sum \frac{bc}{a}\frac{ca}{b}}=RHS \)
Solutia 2:
Aducand la acelasi numitor si ridicand la patrat inegalitatea este echivalenta cu :
\( \sum_{sym} a^6b^2+\sum_{sym}a^6bc+\sum_{sym}a^3b^3c^2+\sum_{sym}a^4b^4+2\sum_{sym}{a^4b^3c\ge6\sum_{sym}a^4b^2c^2 \) care este adevarata din Muerhead si AM-GM
De exemplu \( a^6b^2+a^3b^3c^2+a^3b^3c^2\ge 3a^4b^2c^2 \)
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
\( \bullet \) Sa se demonstreze inegalitatile in numere pozitive (own):
1) \( \frac{a^2+b^2}{c}+\frac{b^2+c^2}{c}+\frac{c^2+a^2}{b}\ge\frac{2(a+b+c)^3}{3(ab+bc+ca)} \)
2) \( \frac{a^2+b^2}{c}+\frac{b^2+c^2}{a}+\frac{c^2+a^2}{b}\ge\frac{2}{3}(a+b+c)^2\sqrt{\frac{a+b+c}{3abc}} \)
1) \( \frac{a^2+b^2}{c}+\frac{b^2+c^2}{c}+\frac{c^2+a^2}{b}\ge\frac{2(a+b+c)^3}{3(ab+bc+ca)} \)
2) \( \frac{a^2+b^2}{c}+\frac{b^2+c^2}{a}+\frac{c^2+a^2}{b}\ge\frac{2}{3}(a+b+c)^2\sqrt{\frac{a+b+c}{3abc}} \)
Last edited by Marius Mainea on Fri Jun 12, 2009 10:11 pm, edited 1 time in total.
1)Solutia 1.Aplicam Holder :Marius Mainea wrote:
1) \( \frac{a^2+b^2}{c}+\frac{b^2+c^2}{c}+\frac{c^2+a^2}{b}\ge\frac{2(a+b+c)^3}{3(ab+bc+ca)} \)
\( \sum_{cyc}\frac{a^2}{c}=\sum_{cyc}\frac{a^3}{ca}\ge\frac{(a+b+c)^3}{3(ab+bc+ca)} \)
si
\( \sum_{cyc}\frac{b^2}{c}=\sum_{cyc}\frac{b^3}{bc}\ge\frac{(a+b+c)^3}{3(ab+bc+ca)} \).
Last edited by alex2008 on Fri Jun 12, 2009 11:20 pm, edited 1 time in total.
. A snake that slithers on the ground can only dream of flying through the air.
2)Solutia 1.(Toate sumele sunt ciclice) Normalizam cu : \( a+b+c=3 \) si inegalitatea este echivalenta cu :
\( \sum_{cyc} ab(a^2+b^2)\ge 6\sqrt{abc} \).
Fie \( P=a^2b+b^2c+c^2a \) si \( Q=ab^2+bc^2+ca^2 \). Deci trebuie sa demonstram ca :
\( (P+Q)^2\ge 36abc \)
Din AM-GM ar fi de ajuns sa demonstram ca :
\( PQ\ge 9abc \), si omogenizam din nou :
\( \begin{align*}3\left(\sum_{cyc} a^2b\right)\left(\sum_{cyc} ab^2\right)&\ge abc(a+b+c)^3\\
\Leftrightarrow 3\sum a^3b^3+3abc\sum_{cyc} a^3+9a^2b^2c^2&\ge abc\sum a^3+3abc(P+Q)+6a^2b^2c^2\\
\Leftrightarrow 3\sum_{cyc} a^3b^3+2abc\sum_{cyc} a^3+3a^2b^2c^2&\ge 3abc(P+Q),\end{align*} \)
care este adevarata din inegalitatile :
\( abc\sum_{cyc} a^3+3a^2b^2c^2\ge abc(P+Q) \) (Schur)
\( abc\sum_{cyc} a^3\ge abcP \) (Rearanjamente)
\( \sum_{cyc} (2a^3b^3+c^3a^3)\ge \sum_{cyc} 3a^3b^2c\Rightarrow \sum_{cyc} a^3b^3\ge abcP \) (AM-GM)
\(
\sum_{cyc} (a^3b^3+2c^3a^3)\ge 3a^3bc^2\Rightarrow 2\sum_{cyc} a^3b^3\ge 2Q \) (AM-GM)
\( \sum_{cyc} ab(a^2+b^2)\ge 6\sqrt{abc} \).
Fie \( P=a^2b+b^2c+c^2a \) si \( Q=ab^2+bc^2+ca^2 \). Deci trebuie sa demonstram ca :
\( (P+Q)^2\ge 36abc \)
Din AM-GM ar fi de ajuns sa demonstram ca :
\( PQ\ge 9abc \), si omogenizam din nou :
\( \begin{align*}3\left(\sum_{cyc} a^2b\right)\left(\sum_{cyc} ab^2\right)&\ge abc(a+b+c)^3\\
\Leftrightarrow 3\sum a^3b^3+3abc\sum_{cyc} a^3+9a^2b^2c^2&\ge abc\sum a^3+3abc(P+Q)+6a^2b^2c^2\\
\Leftrightarrow 3\sum_{cyc} a^3b^3+2abc\sum_{cyc} a^3+3a^2b^2c^2&\ge 3abc(P+Q),\end{align*} \)
care este adevarata din inegalitatile :
\( abc\sum_{cyc} a^3+3a^2b^2c^2\ge abc(P+Q) \) (Schur)
\( abc\sum_{cyc} a^3\ge abcP \) (Rearanjamente)
\( \sum_{cyc} (2a^3b^3+c^3a^3)\ge \sum_{cyc} 3a^3b^2c\Rightarrow \sum_{cyc} a^3b^3\ge abcP \) (AM-GM)
\(
\sum_{cyc} (a^3b^3+2c^3a^3)\ge 3a^3bc^2\Rightarrow 2\sum_{cyc} a^3b^3\ge 2Q \) (AM-GM)
. A snake that slithers on the ground can only dream of flying through the air.
2)Solutia 2. Fie \( 3u =a+b+c\ ,\ 3v^2=ab+bc+ca\ ,\ w^3=abc \)
\( \sum_{cyc} 3\sqrt{3}ab(a^2+b^2) \ge 2\sqrt{abc(a+b+c)^5} \)
Evident \( RHS = 18\sqrt{w^3u^5} \).
\( LHS = \sqrt{3}(81u^2v^2 -54v^2-9uw^3) \).
Fie \( x =\sqrt{w^3} \) . Atunci :
\( LHS-RHS = -9\sqrt{3}u \cdot x^2 +18\sqrt{u^5} \cdot x +\sqrt{3}( 81u^2v^2 - 54v^2) \).
Aceasta este clar concava in \( x \), deci mai trebuie sa verificam inegalitatea pentru valoare maxima si minima a lui \( x \). Adica valoarea maxima si minima pentru \( w^3 \) . Deci mai trebuie sa verificam inegalitatea atunci cand \( c=0 \) si cand \( b=c=1 \) .(deoarece e omogena)
\( c=0 \) : \( 3ab(a^2+b^2) \ge 0 \) care este evidenta .
\( b=c=1 \) : \( 6\sqrt{3}(a^3+a+1) \ge 2\sqrt{a(a+2)^5} \Leftrightarrow
27(a^3+a+1)^2 \ge a(a+2)^5 \Leftrightarrow \)
\( 27a^6 + 54a^4 + 54a^3 + 27a^2 + 54a + 27 \ge a^6 + 10a^5 + 40a^4 + 80a^3 + 80a^2+32a \Leftrightarrow
26a^6 - 10a^5 + 14a^4 - 26a^3 - 53a^2 + 22a + 27 \ge 0 \Leftrightarrow \)
\( (a-1)(26a^5 + 16a^4 + 30a^3 + 4a^2 - 49a- 27) \ge 0 \Leftrightarrow
(a-1)^2(26a^4 + 42a^3 + 72a^2 + 76a + 27) \ge 0 \)
\( \sum_{cyc} 3\sqrt{3}ab(a^2+b^2) \ge 2\sqrt{abc(a+b+c)^5} \)
Evident \( RHS = 18\sqrt{w^3u^5} \).
\( LHS = \sqrt{3}(81u^2v^2 -54v^2-9uw^3) \).
Fie \( x =\sqrt{w^3} \) . Atunci :
\( LHS-RHS = -9\sqrt{3}u \cdot x^2 +18\sqrt{u^5} \cdot x +\sqrt{3}( 81u^2v^2 - 54v^2) \).
Aceasta este clar concava in \( x \), deci mai trebuie sa verificam inegalitatea pentru valoare maxima si minima a lui \( x \). Adica valoarea maxima si minima pentru \( w^3 \) . Deci mai trebuie sa verificam inegalitatea atunci cand \( c=0 \) si cand \( b=c=1 \) .(deoarece e omogena)
\( c=0 \) : \( 3ab(a^2+b^2) \ge 0 \) care este evidenta .
\( b=c=1 \) : \( 6\sqrt{3}(a^3+a+1) \ge 2\sqrt{a(a+2)^5} \Leftrightarrow
27(a^3+a+1)^2 \ge a(a+2)^5 \Leftrightarrow \)
\( 27a^6 + 54a^4 + 54a^3 + 27a^2 + 54a + 27 \ge a^6 + 10a^5 + 40a^4 + 80a^3 + 80a^2+32a \Leftrightarrow
26a^6 - 10a^5 + 14a^4 - 26a^3 - 53a^2 + 22a + 27 \ge 0 \Leftrightarrow \)
\( (a-1)(26a^5 + 16a^4 + 30a^3 + 4a^2 - 49a- 27) \ge 0 \Leftrightarrow
(a-1)^2(26a^4 + 42a^3 + 72a^2 + 76a + 27) \ge 0 \)
. A snake that slithers on the ground can only dream of flying through the air.
1)Solutia 2.Fie \( 3u =a+b+c\ ,\ 3v^2=ab+bc+ca\ ,\ w^3=abc \)
\( \sum_{cyc} ab(a^2+b^2) \ge \frac{2abc(a+b+c)^3}{3(ab+bc+ca)} \)
\( LHS \) este de gradul 4 si este liniar in \( w^3 \) . \( RHS = \frac{18w^3u^3}{v^2} \) este de asemenea liniar in \( w^3 \) , si deci mai trebuie doar sa demonstram inegalitatea cand \( c=0 \) si cand \( b=c=1 \) (deoarece e omogena).
Daca \( c=0 \) , avem \( ab(a^2+b^2) \ge 0 \), care este evidenta .
\( b=c=1 \) : \( 3(2a+1)(a^3+a+1) \ge a(a+2)^3 \Leftrightarrow
6a^4+3a^3+6a^2+9a+3 \ge a^4+6a^3+12a^2+8a \Leftrightarrow 5a^4-3a^3-6a^2+a+3 \ge 0 \Leftrightarrow
(a-1)(5a^3+2a^2-4a-3) \ge 0 \Leftrightarrow
(a-1)^2(5a^2+7a+3) \ge 0 \)
\( \sum_{cyc} ab(a^2+b^2) \ge \frac{2abc(a+b+c)^3}{3(ab+bc+ca)} \)
\( LHS \) este de gradul 4 si este liniar in \( w^3 \) . \( RHS = \frac{18w^3u^3}{v^2} \) este de asemenea liniar in \( w^3 \) , si deci mai trebuie doar sa demonstram inegalitatea cand \( c=0 \) si cand \( b=c=1 \) (deoarece e omogena).
Daca \( c=0 \) , avem \( ab(a^2+b^2) \ge 0 \), care este evidenta .
\( b=c=1 \) : \( 3(2a+1)(a^3+a+1) \ge a(a+2)^3 \Leftrightarrow
6a^4+3a^3+6a^2+9a+3 \ge a^4+6a^3+12a^2+8a \Leftrightarrow 5a^4-3a^3-6a^2+a+3 \ge 0 \Leftrightarrow
(a-1)(5a^3+2a^2-4a-3) \ge 0 \Leftrightarrow
(a-1)^2(5a^2+7a+3) \ge 0 \)
. A snake that slithers on the ground can only dream of flying through the air.