O inegalitate in triunghi
Moderators: Laurian Filip, Filip Chindea, Radu Titiu, maky, Cosmin Pohoata
O inegalitate in triunghi
Sa se arate ca in orice triunghi are loc inegalitatea: \( R+r\geq\sqrt[3]{r_ar_br_c} \) , notatiile sunt cele cunoscute.
"Matematica este asemeni constitutiei unei tari, ale carei legi sunt: leme, teoreme, definitii..." Nica Nicolae
-
opincariumihai
- Thales
- Posts: 134
- Joined: Sat May 09, 2009 7:45 pm
- Location: BRAD
- Mateescu Constantin
- Newton
- Posts: 307
- Joined: Tue Apr 21, 2009 8:17 am
- Location: Pitesti
Din relatiile \( r_a+r_b+r_c=4R+r \) si \( \frac{1}{r}=\frac{1}{r_a}+\frac{1}{r_b}+\frac{1}{r_c} \) inegalitatea devine
\( r_a+r_b+r_c+\frac{3}{\frac{1}{r_a}+\frac{1}{r_b}+\frac{1}{r_c}}\ \ge\ 4\sqrt[3]{r_ar_br_c} \)
\( \Longleftrightarrow\ 3m_a+m_h\ \ge\ 4m_g \)
Avem \( m_a^2\cdot m_h\ \ge\ m_g^3 \), deoarece se reduce la \( \sum(a-b)^2\ge 0 \) .
Atunci \( 3m_a+m_h\ \ge\ 4\sqrt[4]{m_a^3\cdot m_h}=4\sqrt[4]{m_a(m_a^2\cdot m_h)}\ \ge\ 4\sqrt[4]{m_a\cdot m_g^3}\ \ge\ 4\sqrt[4]{m_g^4}=4\sqrt[3]{abc}=4m_g \)
\( r_a+r_b+r_c+\frac{3}{\frac{1}{r_a}+\frac{1}{r_b}+\frac{1}{r_c}}\ \ge\ 4\sqrt[3]{r_ar_br_c} \)
\( \Longleftrightarrow\ 3m_a+m_h\ \ge\ 4m_g \)
Avem \( m_a^2\cdot m_h\ \ge\ m_g^3 \), deoarece se reduce la \( \sum(a-b)^2\ge 0 \) .
Atunci \( 3m_a+m_h\ \ge\ 4\sqrt[4]{m_a^3\cdot m_h}=4\sqrt[4]{m_a(m_a^2\cdot m_h)}\ \ge\ 4\sqrt[4]{m_a\cdot m_g^3}\ \ge\ 4\sqrt[4]{m_g^4}=4\sqrt[3]{abc}=4m_g \)