Maximul unei expresii trigonometrice

Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea

Post Reply
User avatar
Mateescu Constantin
Newton
Posts: 307
Joined: Tue Apr 21, 2009 8:17 am
Location: Pitesti

Maximul unei expresii trigonometrice

Post by Mateescu Constantin »

Fie \( a_1,\ a_2,\ ...,\ a_n \in \left\(0,\ \frac{\pi}{2}\right\)\ ,\ \ n\in \mathbb{N}, \ n\ge 2 \), astfel incat \( \prod_{k=1}^{n}\tan\ a_k=1 \).
Sa se determine maximul expresiei:\( \prod_{k=1}^{n}\sin\ a_k \).

G.M. 4/2002
Last edited by Mateescu Constantin on Sun Sep 12, 2010 6:41 pm, edited 1 time in total.
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

Folosind AM-GM

\( \prod \sin a_k=\prod\frac{\tan a_k}{\sqrt{1+\tan^2a_k}}\le \frac{1}{\sqrt{\prod 2\tan a_k}}=2^{-\frac{n}{2}} \)
Post Reply

Return to “Clasa a IX-a”