Traian Lalescu pentru Studenti 2009, Problema 4

Moderators: Bogdan Posa, Beniamin Bogosel, Marius Dragoi

Post Reply
User avatar
Beniamin Bogosel
Co-admin
Posts: 710
Joined: Fri Mar 07, 2008 12:01 am
Location: Timisoara sau Sofronea (Arad)
Contact:

Traian Lalescu pentru Studenti 2009, Problema 4

Post by Beniamin Bogosel »

Fie \( A \in \mathcal{M}_n (\mathbb{Z}) \) cu \( A \neq I_n \) si \( k \in \mathbb{N}^*,\ k\geq 3 \) astfel incat \( \hat{A}=\hat{I_n} \) in \( \mathcal{M}_n(\mathbb{Z}_k) \). Aratati ca pentru orice \( p \in \mathbb{N}^* \) avem \( A^p\neq I_n \).

Cu \( \hat{A} \) s-a notat matricea cu elementele \( (\hat{a_{ij}) \) unde \( A=(a_{ij}) \).
Yesterday is history,
Tomorow is a mistery,
But today is a gift.
That's why it's called present. :)

Blog
Post Reply

Return to “Algebra”