Inegalitate in trei variabile subunitare

Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea

Post Reply
alex2008
Leibniz
Posts: 464
Joined: Sun Oct 19, 2008 3:23 pm
Location: Tulcea

Inegalitate in trei variabile subunitare

Post by alex2008 »

Fie \( x,y,z\in (0,1) \) . Sa se demonstreze ca :

\( \frac{3 + xy}{1 - z} + \frac{3 + yz}{1 - x} + \frac{3 + zx}{1 - y}\ge 4\left(\frac{x + y}{1 - xy} + \frac{y + z}{1 - yz} + \frac{z + x}{1 - zx}\right) \)

Virgil Nicula
. A snake that slithers on the ground can only dream of flying through the air.
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

Avem

\( \frac{1}{1-xy}\le\frac{1}{1-\frac{x^2+y^2}{2}}=\frac{2}{(1-x^2)+(1-y^2)}\le\frac{\frac{1}{1-x^2}+\frac{1}{1-y^2}}{2} \)

Asadar \( RHS\le\sum 2\frac{2x+y+z}{1-x^2}\le\sum \frac{3+yz}{1-x}=LHS \) deoarece

\( 2(2x+y+z)\le (1+x)(3+yz) \) (demonstrati) :wink:
Post Reply

Return to “Clasa a IX-a”