Page 1 of 1

Inegalitate cu tangenta

Posted: Tue May 12, 2009 10:16 am
by Mateescu Constantin
Sa se arate ca \( \tan\ \left(\frac{\pi}{4n}\right)\ \le\ \frac{1}{n}\ ,\ (\forall)\ n\ \in\ \mathbb{N}\ ,\ \ n\ \ge\ 1. \)

Posted: Tue May 12, 2009 7:49 pm
by alex2008
\( \mathrm{tg}\ \frac{\pi}{4n}\ <\ \frac{\pi}{4n}\ \cdot \ \frac{1}{\cos \ \frac{\pi}{4n}}\ \le \ \frac{\pi}{4n}\ \cdot \ \frac{1}{\cos \ \frac{\pi}{8}}\ =\ \frac{\pi}{4n}\ \cdot \ \frac{1}{\frac{\sqrt{2+\sqrt{2}}}{2}}\ <\ \frac{\pi}{4n}\ \cdot \ \frac{1}{\frac{\pi}{4}}\ =\ \frac{1}{n}\ ,\ (\forall)n\ge 2 \)

Daca \( n=1 \), avem egalitate.