Inegalitate cu tangenta
Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea
- Mateescu Constantin
- Newton
- Posts: 307
- Joined: Tue Apr 21, 2009 8:17 am
- Location: Pitesti
Inegalitate cu tangenta
Sa se arate ca \( \tan\ \left(\frac{\pi}{4n}\right)\ \le\ \frac{1}{n}\ ,\ (\forall)\ n\ \in\ \mathbb{N}\ ,\ \ n\ \ge\ 1. \)
Last edited by Mateescu Constantin on Sun May 09, 2010 4:28 pm, edited 3 times in total.
\( \mathrm{tg}\ \frac{\pi}{4n}\ <\ \frac{\pi}{4n}\ \cdot \ \frac{1}{\cos \ \frac{\pi}{4n}}\ \le \ \frac{\pi}{4n}\ \cdot \ \frac{1}{\cos \ \frac{\pi}{8}}\ =\ \frac{\pi}{4n}\ \cdot \ \frac{1}{\frac{\sqrt{2+\sqrt{2}}}{2}}\ <\ \frac{\pi}{4n}\ \cdot \ \frac{1}{\frac{\pi}{4}}\ =\ \frac{1}{n}\ ,\ (\forall)n\ge 2 \)
Daca \( n=1 \), avem egalitate.
Daca \( n=1 \), avem egalitate.
. A snake that slithers on the ground can only dream of flying through the air.