Continuitate si progresii

Moderators: Bogdan Posa, Laurian Filip, Beniamin Bogosel, Radu Titiu, Marius Dragoi

Post Reply
Laurentiu Tucaa
Thales
Posts: 145
Joined: Sun Mar 22, 2009 6:22 pm
Location: Pitesti

Continuitate si progresii

Post by Laurentiu Tucaa »

Fie \( f:\mathbb{R}\rightarrow \mathbb{R} \) continua a.i. exista \( a,b \in \mathbb{R},a<b \) cu proprietatea \( f(a)f(b)<0 \). Sa se demonstreze ca \( \forall n>2 \) exista o progresie aritmetica \( x_1<x_2<...<x_n \) astfel incat \( \sum_{i=1}^n f(x_i)=0 \).
User avatar
Beniamin Bogosel
Co-admin
Posts: 710
Joined: Fri Mar 07, 2008 12:01 am
Location: Timisoara sau Sofronea (Arad)
Contact:

Post by Beniamin Bogosel »

Fie \( \delta>0 \) si \( g : \mathbb{R} \to \mathbb{R}, \ g(x)=f(x)+f(x+\delta)+...+f(x+(n-1)\delta) \). Evident \( g \) e continua. Deoarece exista un punct in care \( f \) e strict pozitiva, exista un interval \( I \) centrat in acel punct a.i. \( f \) e strict pozitiva pe \( I \). Analog exista un interval \( J \) in care \( f \) este negativa.
Luam \( \delta \) ca fiind minimul dintre lungimile lui \( I,J \) impartit la \( n \). Atunci \( g \) are si valori strict negative si valori strict pozitive, deci se anuleaza, si exista o progresie ca si in enunt.
Yesterday is history,
Tomorow is a mistery,
But today is a gift.
That's why it's called present. :)

Blog
Post Reply

Return to “Analiza matematica”