Ordonati crescator !

Moderators: Bogdan Posa, Laurian Filip

Post Reply
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Ordonati crescator !

Post by Marius Mainea »

Fie \( a_1,a_2,...,a_n,b_1,b_2,...,b_n \) numere pozitive astfel incat \( a_k^2-\frac{1}{k}=4b_k \) , \( k=\overline{1,n} \) , n natural fixat.
Ordonati crescator numerele \( A=\sum_{k=1}^{n} {\frac{a_k^2+b_k}{4a_k\sqrt{b_k}}} \) , \( B=\sum_{k=1}^{n} {\frac{\sqrt{b_k}}{a_k}} \) , \( C=\sum_{k=1}^{n} {\frac{a_k}{4\sqrt{b_k}}} \) si \( \frac{n}{2} \) .

,,Gh. Titeica'' 1999
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

Indicatie: \( B\le \frac{n}{2}\le C\le A \)
User avatar
Andi Brojbeanu
Bernoulli
Posts: 294
Joined: Sun Mar 22, 2009 6:31 pm
Location: Targoviste (Dambovita)

Post by Andi Brojbeanu »

\( B=\sum_{k=1}^n {\frac{\sqrt{b_k}}{a_k}}=\sum_{k=1}^n {\frac{\sqrt{\frac{a_k^2-\frac{1}{k}}{4}}}{a_k}}=\sum_{k=1}^n {\frac{\sqrt{a_k^2-\frac{1}{k}}}{2a_k}}\le \sum_{k=1}^n {\frac{\sqrt{a_k^2}}{2a_k}}=\sum_{k=1}^n {\frac{a_k}{2a_k}}=\frac{1}{2}\cdot n=\frac{n}{2}\Rightarrow B\le \frac{n}{2} \).

\( C=\sum_{k=1}^n {\frac{a_k}{4\sqrt{b_k}}}=\sum_{k=1}^n {\frac{a_k}{4 \sqrt{\frac{a_k^2-\frac{1}{k}}{4}}}}=\sum_{k=1}^n {\frac{a_k}{2\sqrt{a_k^2-\frac{1}{k}}}}\ge \sum_{k=1}^n {\frac{a_k}{2\sqrt{a_k^2}}}=\sum_{k=1}^n {\frac{a_k}{2a_k}}=\frac{1}{2}\cdot n= \frac{n}{2}\Rightarrow C\ge \frac{n}{2} \).


\( \frac{a_k^2+b_k}{4a_k\sqrt{b_k}}\ge \frac{a_k}{4\sqrt{b_k}} \Leftrightarrow a_k^2+b_k\ge a_k^2 \Leftrightarrow b_k\ge 0 \), adevarat, \( \forall k\in \mathb{N} \). Asadar, avem: \( \sum_{k=1}^n {\frac{a_k^2+b_k}{4a_k\sqrt{b_k}}}\ge \sum_{k=1}^n {\frac{a_k}{4\sqrt{b_k}}} \Rightarrow A\ge C \).

Deci, ordinea este \( B\le \frac{n}{2}\le C \le A \).
Last edited by Andi Brojbeanu on Tue Dec 29, 2009 9:03 pm, edited 1 time in total.
mihai++
Bernoulli
Posts: 206
Joined: Wed Nov 28, 2007 8:08 pm
Location: Focsani

Post by mihai++ »

O echivalenta nu este adevarata cand treci de la suma la termenul sumei, dar rezolvarea e foarte buna.
n-ar fi rau sa fie bine :)
User avatar
Andi Brojbeanu
Bernoulli
Posts: 294
Joined: Sun Mar 22, 2009 6:31 pm
Location: Targoviste (Dambovita)

Post by Andi Brojbeanu »

Multumesc pentru sesizare. Am modificat si sper ca acum sa fie bine.
Post Reply

Return to “Clasa a VIII-a”