TMMATE 2009, Problema 2

Moderators: Bogdan Posa, Laurian Filip, Beniamin Bogosel, Radu Titiu, Marius Dragoi

Post Reply
User avatar
Laurian Filip
Site Admin
Posts: 344
Joined: Sun Nov 25, 2007 2:34 am
Location: Bucuresti/Arad
Contact:

TMMATE 2009, Problema 2

Post by Laurian Filip »

Fie sirul \( (a_n)_{n \geq 1} \) pentru care \( a_1=1 \) si \( a_{n+1}=\frac{n}{a_n+1} \) pentru \( n \geq 1 \). Aratati ca:
a) \( a_n \geq \sqrt{n} -1, \forall n \in \mathbb{N}^* \);
b) \( \lim_{n\to\infty} \frac{a_n^2}{n}=1. \)

Laurentiu Panaitopol
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

Se arata prin inductie ca \( \sqrt{n}\ge a_n\ge \sqrt{n}-1 \)
Post Reply

Return to “Analiza matematica”