Doua inegalitati in numere pozitive

Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea

Post Reply
alex2008
Leibniz
Posts: 464
Joined: Sun Oct 19, 2008 3:23 pm
Location: Tulcea

Doua inegalitati in numere pozitive

Post by alex2008 »

Fie trei numere reale \( a,b,c\ge 0 \). Sa se demonstreze ca :

a) \( 8(a^3+b^3+c^3)^2\ge 9(a^2+bc)(b^2+ca)(c^2+ab) \)

b) \( (a^2+ab+b^2)(b^2+bc+c^2)(c^2+ca+a^2)\ge (ab+bc+ca)^3 \)
. A snake that slithers on the ground can only dream of flying through the air.
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

a) Inegalitatea este echivalenta cu \( 8\sum {a^6}+7\sum {a^3b^3}\ge 18a^2b^2c^2+9\sum {a^4bc} \) care este adevarata folosind AM-GM deoarece

\( a^6+a^6+b^3c^3\ge 3\sqrt[3]{a^{12}b^3c^3}=3a^4bc \)

\( \sum {a^3b^3}\ge 3a^2b^2c^2 \)
si

\( \sum {a^6}\ge \frac{1}{3}(a^3+b^3+c^3)^2\ge abc(a^3+b^3+c^3) \)

b) Aplicam inegalitatea lui Holder:


\( LHS=(a^2+b^2+ab)(ac+c^2+a^2)(c^2+bc+b^2)\ge (\sqrt[3]{a^2acc^2}+\sqrt[3]{b^2c^2bc}+\sqrt[3]{aba^2b^2})^3=RHS \)
alex2008
Leibniz
Posts: 464
Joined: Sun Oct 19, 2008 3:23 pm
Location: Tulcea

Post by alex2008 »

a)Aplicam \( MA-MG \) si \( Holder \) si avem :

\( 9(x^2+yz)(y^2+zx)(z^2+xy)\le 9\left(\frac{x^2+y^2+z^2+xy+yz+zx}{3}\right)^3\le \frac{8}{3}(x^2+y^2+z^2)^3\le 8(x^3+y^3+z^3)^2 \)
. A snake that slithers on the ground can only dream of flying through the air.
Post Reply

Return to “Clasa a IX-a”