ONM Problema 1

Moderators: Bogdan Posa, Laurian Filip, Beniamin Bogosel, Radu Titiu, Marius Dragoi

Post Reply
User avatar
Laurian Filip
Site Admin
Posts: 344
Joined: Sun Nov 25, 2007 2:34 am
Location: Bucuresti/Arad
Contact:

ONM Problema 1

Post by Laurian Filip »

Fie \( (t_n)_n \) un sir convergent de numere reale, \( t_n \in (0,1) \) pentru orice \( n \in \mathbb{N} \) si \( \lim_{n\to\infty}t_n \in (0,1) \). Definim sirurile \( (x_n)_n \) si \( (y_n)_n \) prin relatiile
\( x_{n+1}=t_nx_n+(1-t_n)y_n \)
\( y_{n+1}=(1-t_n)x_n+t_ny_n \)
pentru orice \( n\in\mathbb{N} \) si \( x_0, y_0 \) numere reale fixate.
a) Aratati ca \( (x_n)_n \) si \( (y_n)_n \) sunt convergente la aceeasi limita
b) Daca \( \lim_{n\to \infty} t_n \in \lbrace 0, 1} \) atunci concluzia nu ramane adevarata.
Last edited by Laurian Filip on Tue Apr 14, 2009 7:33 am, edited 1 time in total.
Laurentiu Tucaa
Thales
Posts: 145
Joined: Sun Mar 22, 2009 6:22 pm
Location: Pitesti

Post by Laurentiu Tucaa »

Se constata ca \( x_{n+1}+y_{n+1}=x_n+y_n \) ceea ce conduce la \( x_n+y_n=x_0+y_0,\forall n\in\mathbb{N} \). Se mai observa ca \( x_{n+1}-y_{n+1}=(2t_n-1)(x_n-y_n) \), in final obtinandu-se \( x_n-y_n=(2t_{n-1}-1)(2t_{n-2}-1)...(2t_0-1)(x_0-y_0) \). Notam \( s_n=(2t_0-1)(2t_1-1)...(2t_{n-1}-1) \) si demonstram ca \( \lim_{n\to\infty} s_n=0 \)
Avem \( [\min_{k\le n-1}(2t_k-1)]^n \le s_n \le[\max_{k \le n-1} (2t_k-1)]^n \) si trecand la limita tinand cont ca \( t_n \in (0,1) ,\forall n\in\mathbb{N} \) avem \( \lim_{n\to\infty} s_n=0 \), in concluzie \( \lim_{n\to\infty} (x_n-y_n)=0 \) si avand in vedere ca \( \lim_{n\to\infty} (x_n+y_n)=x_0+y_0 \), adunand cele doua relatii, dupa calcule rezulta ca \( \lim_{n\to\infty}x_n=\frac{x_0+y_0}{2} \). De aici \( \lim_{n\to\infty}y_n=\frac{x_0+y_0}{2} \), deci \( \lim_{n\to\infty}x_n=\lim_{n\to\infty}y_n \).
Post Reply

Return to “Analiza matematica”