Ecuatie in numere intregi pozitive

Moderators: Bogdan Posa, Laurian Filip

Post Reply
Claudiu Mindrila
Fermat
Posts: 520
Joined: Mon Oct 01, 2007 2:25 pm
Location: Targoviste
Contact:

Ecuatie in numere intregi pozitive

Post by Claudiu Mindrila »

Rezolvati in numere naturale ecuatia \( x^{3}-y^{3}=2005\left(x^{2}-y^{2}\right) \).

Valentin Vornicu, lista scurta, 2005 (enunt partial)
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
User avatar
salazar
Pitagora
Posts: 91
Joined: Mon Apr 06, 2009 7:36 am
Location: Alba Iulia

Post by salazar »

\( x^3-y^3=2005(x^2-y^2) \)
\( (x-y)(x^2+xy+y^2)=2005(x-y)(x+y) \)
\( x^2+xy+y^2=2005(x+y) \)
\( x(x+y)+y^2=2005(x+y) \)
\( (x+y)(2005-x)=y^2 \)
\( 2005-x=\frac{y^2}{x+y} \)\( \Longrightarrow x+y|y^2\ (1) \)
\( x+y|x+y\ (\cdot y) \)
\( x+y|xy+y^2\ (2) \)
-scadem din (2) pe (1) si obtinem
\( x+y|xy \)
\( x+y|x^2+xy\Longrightarrow \)
\( x+y|x^2 \)
\( x+y|x^2-y^2 \)
\( x+y|(x+y)(x-y) \)
\( x+y|x-y \)
-de aici rezulta \( x|2y \) si analog \( y|2x \)
-fie \( 2y=xk,\ 2x=yp \)
De aici rezulta ca \( kp=4 \) de unde avem cazurile:
\( x=y,x=2y,y=2x \) pe care le analizam.
Sper sa nu fi gresit.
Post Reply

Return to “Clasa a VIII-a”