O problema cu variabile aleatoare

Post Reply
User avatar
bogdanl_yex
Pitagora
Posts: 91
Joined: Thu Jan 31, 2008 9:58 pm
Location: Bucuresti

O problema cu variabile aleatoare

Post by bogdanl_yex »

Fie \( X_{1},X_{2},...,X_{n} \) variabile aleatoare independente cu repartitiile \( P(X_{i}=k)=pq^{k},i=1,2;k=0,1,2,3... \).Sa se arate ca \( P(X_{1}=k/X_{1}+X_{2}=n)= \frac{1}{n+1},k=1,n. \)
"Don't worry about your difficulties in mathematics; I can assure you that mine are still greater"(Albert Einstein)
User avatar
Beniamin Bogosel
Co-admin
Posts: 710
Joined: Fri Mar 07, 2008 12:01 am
Location: Timisoara sau Sofronea (Arad)
Contact:

Post by Beniamin Bogosel »

Se aplica formula probabilitatilor conditionate:
\( P(X_1=k | X_1+X_2=n )=\frac{P(X_1=k)P(X_2=n-k)}{P(X_1+X_2=n)}=\frac{pq^kpq^{n-k}}{\sum_{i=0}^n pq^ipq^{n-i}}=\frac{1}{n+1} \).
Yesterday is history,
Tomorow is a mistery,
But today is a gift.
That's why it's called present. :)

Blog
Post Reply

Return to “Probabilitati si Procese Stochastice”