Inegalitate

Post Reply
alex2008
Leibniz
Posts: 464
Joined: Sun Oct 19, 2008 3:23 pm
Location: Tulcea

Inegalitate

Post by alex2008 »

Sa se arate ca daca a,b,c sunt numere pozitive , atunci :

\( \sum_{cyc}\frac{a^3}{a^2+ab+b^2}\ge \frac{a+b+c}{3} \) .

Inegalitati elementare, Bogdan Enescu
. A snake that slithers on the ground can only dream of flying through the air.
User avatar
Mateescu Constantin
Newton
Posts: 307
Joined: Tue Apr 21, 2009 8:17 am
Location: Pitesti

Post by Mateescu Constantin »

Avem egalitatile: \( \left\|\ \begin{array}{ccc}
\frac{a^{3}-b^{3}}{a^{2}+ab+b^{2}} & = & a-b \\\\\\\\
\frac{b^{3}-c^{3}}{b^{2}+bc+c^{2}} & = & b-c \\\\\\\\
\frac{c^{3}-a^{3}}{c^{2}+ca+a^{2}} & = & c-a\ \end{array}\right|\ \bigoplus\ \Longrightarrow\ \sum_{cyc}\frac{a^{3}}{a^{2}+ab+b^{2}}=\sum_{cyc}\frac{b^{3}}{a^{2}+ab+b^{2}}=\frac{1}{2}\sum_{cyc}\frac{a^{3}+b^{3}}{a^{2}+ab+b^{2}}. \)


Acum, \( \ \frac{1}{2}\cdot\frac{a^{3}+b^{3}}{a^{2}+ab+b^{2}}\geq\frac{a+b}{6} \) si analoagele .

\( \Longrightarrow\ LHS\geq\frac{a+b+b+c+c+a}{6}=\frac{a+b+c}{3}. \)
Post Reply

Return to “Clasa a 9-a”