Page 1 of 1
Sir integral, W. L. Putnam
Posted: Sat Mar 14, 2009 12:57 pm
by Marius Mainea
Se considera \( I_n=\int_0^{2\pi}\cos x\cos 2x...\cos nxdx. \)
Sa se determine toate valorile lui \( n\in\{1,2,..,10\} \) pentru care \( I_n\neq 0. \)
,,Gh.Lazar'' 2003
Posted: Fri Sep 11, 2009 9:58 pm
by Theodor Munteanu
Prin inductie deducem ca \( 2^n \cos x_1 \cos x{}_2...\cos x_n = \sum {\cos ( \pm x_1 \pm ... \pm x_n ) \Rightarrow \cos x\cos 2x...\cos nx = } \frac{{\sum {\cos (} \pm x \pm ... \pm nx)}}{{2^n }} \);
\( I_n = \int {\frac{{\sum {\cos (} \pm x \pm ... \pm nx)}}{{2^n }}dx;} \)
\( k \in Z*, \int\limits_0^{2\pi } {\cos kxdx = 0 \Rightarrow \)trebuie gasita combinatia de semne a.i. \( {\rm } \pm {\rm 1} \pm {\rm 2} \pm ... \pm {\rm n = 0}{\rm,\ n} \le {\rm 10;} \)
\( 0 \equiv 1 + 2 + ... + n(\bmod 2) \Rightarrow n(n + 1) = M_4 \Rightarrow n \in \{ 3,4,7,8\}. \)
Posted: Fri Sep 11, 2009 10:23 pm
by opincariumihai
O varianta a acestei probleme era... in testele de bac 2007. S-a dat chiar si anul acesta la cei care au picat in 2007.