Se considera \( I_n=\int_0^{2\pi}\cos x\cos 2x...\cos nxdx. \)
Sa se determine toate valorile lui \( n\in\{1,2,..,10\} \) pentru care \( I_n\neq 0. \)
,,Gh.Lazar'' 2003
Sir integral, W. L. Putnam
Moderators: Bogdan Posa, Beniamin Bogosel, Marius Dragoi
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
-
Theodor Munteanu
- Pitagora
- Posts: 98
- Joined: Tue May 06, 2008 5:46 pm
- Location: Sighetu Marmatiei
Prin inductie deducem ca \( 2^n \cos x_1 \cos x{}_2...\cos x_n = \sum {\cos ( \pm x_1 \pm ... \pm x_n ) \Rightarrow \cos x\cos 2x...\cos nx = } \frac{{\sum {\cos (} \pm x \pm ... \pm nx)}}{{2^n }} \);
\( I_n = \int {\frac{{\sum {\cos (} \pm x \pm ... \pm nx)}}{{2^n }}dx;} \)
\( k \in Z*, \int\limits_0^{2\pi } {\cos kxdx = 0 \Rightarrow \)trebuie gasita combinatia de semne a.i. \( {\rm } \pm {\rm 1} \pm {\rm 2} \pm ... \pm {\rm n = 0}{\rm,\ n} \le {\rm 10;} \)
\( 0 \equiv 1 + 2 + ... + n(\bmod 2) \Rightarrow n(n + 1) = M_4 \Rightarrow n \in \{ 3,4,7,8\}. \)
\( I_n = \int {\frac{{\sum {\cos (} \pm x \pm ... \pm nx)}}{{2^n }}dx;} \)
\( k \in Z*, \int\limits_0^{2\pi } {\cos kxdx = 0 \Rightarrow \)trebuie gasita combinatia de semne a.i. \( {\rm } \pm {\rm 1} \pm {\rm 2} \pm ... \pm {\rm n = 0}{\rm,\ n} \le {\rm 10;} \)
\( 0 \equiv 1 + 2 + ... + n(\bmod 2) \Rightarrow n(n + 1) = M_4 \Rightarrow n \in \{ 3,4,7,8\}. \)
La inceput a fost numarul. El este stapanul universului.
-
opincariumihai
- Thales
- Posts: 134
- Joined: Sat May 09, 2009 7:45 pm
- Location: BRAD