Page 1 of 1
OJ 2004
Posted: Sun Feb 15, 2009 9:36 pm
by alex2008
Daca \( a,b,c\in \mathbb{R} \) si \( a^2+b^2+c^2=3 \) , aratati ca \( |a|+|b|+|c|-abc\le 4 \).
Virgil Nicula, OJ 2004
Posted: Sun Feb 15, 2009 9:47 pm
by Laurian Filip
\( |a|+|b|+|c|-abc \leq |a|+|b|+|c|+|abc| \) (egalitate cand sau 1 sau toate cele 3 numere sunt negative)
Pentru a demonstra ca \( |a|+|b|+|c|+|abc| \leq 4 \), problema devine echivalenta cu a, b, c reale pozitive, aratati ca \( a+b+c+abc \leq 4 \).
\( \frac{a^2+b^2+c^2}{3}\geq \sqrt[3]{(abc)^2} \)
deci \( abc \leq 1\ (1) \)
\( a^2+b^2+c^2-(a+b+c)\geq 0 \)
deci \( (a+b+c) \leq 3\ (2) \)
Adunand relatiile (1) si (2) ajungem la concluzia dorita.
Posted: Sun Feb 15, 2009 9:49 pm
by Marius Mainea
Din AM-GM \( 3=a^2+b^2+c^2\ge3\sqrt[3]{a^2b^2c^2} \) de unde \( -abc\le|abc|\le 1 \)
In concluzie folosind Ineg. Cauchy-Schwarz obtinem
\( LHS\le \sqrt{3(a^2+b^2+c^2)}+1=4 \)