Numar prim care divide o valoare a indicatorului lui Euler

Moderators: Bogdan Posa, Beniamin Bogosel, Marius Dragoi

Post Reply
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Numar prim care divide o valoare a indicatorului lui Euler

Post by Marius Mainea »

Fie p un numar prim si \( a\ge 2 \) un numar natural. Sa se demonstreze ca numarul \( \varphi(a^p+1) \) se divide cu p.

C Mortici, Concursul N.Coculescu, 2007
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

Indicatie: Considerati inelul \( \mathbb{Z}_{a^p+1} \).
User avatar
c.adryan
Euclid
Posts: 19
Joined: Fri Feb 29, 2008 12:22 pm

Post by c.adryan »

\( \mathbb{Z}_{a^p+1} =\{\widehat{0},\widehat{1},....\widehat{a^2-1},...\widehat{a^p-1},\widehat{a^p}\} \) inel.
\( a^{2p}-1=(a^p-1)(a^p+1) \Rightarrow\widehat{a^{2p}-1} =\widehat{0} \)

Avem \( \hat{a^{2p}}=1, \) de unde rezulta \( \hat a \) inversabil si \( ord(\hat a)\in\{2,p,2p\} \).

Ordinul lui \( \hat a \) nu poate sa fie 2 sau p, deoarece \( \widehat{a^2-1}\neq 0 \ {\mbox si } \widehat{a^p-1}\neq0 \Rightarrow ord(\hat a)=2p. \)

Dar \( \hat a \in U(\mathbb{Z}_{a^p+1}) \Rightarrow ord(\hat a)\ | \ \ |U(\mathbb{Z}_{a^p+1})| \ \Rightarrow 2p\ |\ \varphi(a^p+1) \).
Post Reply

Return to “Algebra”